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Abstract. We studied synchronization and clustering in two types of
pulse-coupled oscillators, namely, integrate-and-fire and light-controlled
oscillators. We considered for the analysis globally coupled oscillators,
either by a mean-field type coupling or a distance-dependent one. Using
statistically diverse measures such as the transient, probability of total
synchronization, fraction of clustered oscillators, mean size, and mean
number of clusters, we describe clustering and synchronous behavior
for populations of nonidentical oscillators and perform a comparative
analysis of the behavioral differences and similitudes among these types
of oscillators. Considering a mean-field approach, we found high proba-
bility of total synchronization in all cases for integrate-and-fire oscilla-
tors; on the other hand, in a more realistic situation, for light-controlled
oscillators, i.e., when oscillators do not fire instantaneously, the proba-
bility of total synchronization decreases drastically for small differences
among the oscillators and subsequently, for larger differences, it slightly
increases. When the coupling strength depends on the distance, the
probability of total synchronization plummets dramatically with the
number of oscillators especially in the case of integrate-and-fire oscil-
lators. The latter constitutes an interesting result because it indicates
that in realistic situations, the probability of total synchronization is
not very high for a population of pulse-coupled oscillators; this entails
that its utilization as a paradigmatic model of total synchronization
does not suit well, especially when the coupling depends on the dis-
tance. This article is dedicated to our good friend and colleague Hilda
Cerdeira as a tribute to the scientific work developed over her career.
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1 Introduction

The adjustment of rhythms of two or more oscillators due to a coupling between them
is known as synchronization [1], a phenomenon which is widespread in systems of very
diverse nature. Its study has deserved numerous publications dealing with theoretical
and practical aspects. A review of synchronization theory can be found in [1–6] and
its relation to complex networks in [7,8].

Synchronization of pulse-coupled oscillators has generated a lot of interest due to
its applications related to biological systems such as the functionality of cardiac cells
[9] and neurons [10], and the courtship of fireflies [11].

Integrate-and-fire oscillator (IFO) constitutes a paradigmatic model of pulse-
coupled oscillators. Since its introduction by Mirollo and Strogatz [12], many the-
oretical contributions have been devoted to the study of synchronization of these
oscillators, including aspects such as collective synchronization [13], inhibitory cou-
pling [14], synchronization analysis of locally [15] and globally [16] coupled IFOs and
its relation to self-organized criticality, synchronization time determination [17], slow
switching in all-to-all delayed couplings [18], and synchronization when it is regulated
or tuned by the movement of the oscillators [19–21], among others.

One of the most astonishing phenomena in nature is the synchronous flashing of
certain firefly species [22], in particular in species of Thailand [23], New Guinea [24],
North America [25,26], and Brazil [27]. This phenomenon has inspired several math-
ematical models [12,28], and also some electronic devices mimicking this behavior,
like light-controlled oscillators (LCOs) [29]. These LCOs have been widely studied
in several respects, e.g., synchronization in linear configurations [30], Arnold tongues
determination [31], and noise effects [32,33]. Furthermore, LCOs have been recently
applied to the complete courtship process, i.e., synchronization of males and the con-
sequent response of females [11]. The underlying model for LCOs arises from the
validation of experimental results [29,34] and in this sense we can affirm that these
LCOs constitute realistic oscillators.

In a certain way, IFOs and LCOs are similar but they differ in a primordial
aspect, the firing process which is instantaneous in an IFO, contrary to the LCO’s
case, in which the firing is related to the duration of the flash emitted by an LCO
that constitutes the possible coupling with other LCOs.

In this work, we consider globally coupled LCOs and IFOs, both described in
Sect. 2. We analyze in Sect. 3, the probability of total synchronization (PTS), un-
derlying transients (synchronization time) and clustering in populations of identical
and nonidentical oscillators ranging from 2 to 25 oscillators and considering two types
of coupling, namely, a mean-field and a distance-dependent coupling. In Sect. 4, we
describe the methods and we also discuss the most important results by comparing
the different cases and strengthening the differences of synchronous and clustering
behavior for the considered oscillators. Finally, in Sect. 5, we summarize the results
giving conclusions and perspectives.

2 General description of the oscillators and the coupling schemes

The oscillators that we deal with in this paper are individually considered as relax-
ation oscillators due to their intrinsics characteristics of having two different time
scales, i.e., within each cycle there is an integrating (slow) process followed by a firing
(fast) process. Each process ends at its own threshold. The form of the oscillation is
very different from a sinusoidal wave; rather it resembles a sequence of pulses. As it
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was stated above, the general feature of relaxation oscillators is the slow growth of
some quantity and its fast resetting at a threshold [1].

2.1 Light-controlled oscillators

These oscillators were introduced for the first time with the aim of mimicking fireflies
behavior [35,36]; the model and its validation from experimental results are shown
in [29]. The main feature of an LCO consists in its emission of pulses of light by
one or several LEDs during its firing process and this fact allows a pulsatile coupling
with other LCOs that can receive these pulses by means of some photodiodes. The
oscillatory features of an LCO are given by simple electronics components in which a
chip LM555 establishes two well-defined lower (VM/3), and upper (2VM/3) thresholds,
where the discharging stage changes to the charging one and vice versa when one of
these thresholds is achieved; VM being the voltage source. These stages are associated
to a binary variable ϵ(t). The time intervals lasting for the charging (slow process with
ϵ(t) = 1) and the discharging (fast process with ϵ(t) = 0) are characterized by the
values of the resistors Rλ and Rγ respectively, and also by the capacitor C of two RC
circuits related to these processes. Furthermore, considering that LCOs are mutually
coupled with a coupling strength βij that represents the pulsatile action of the LCOj ’s
flash over the LCOi that occurs during the discharging of the LCOj . Concurrently,
βij are the elements of the weighted adjacency matrix of the set [37]. The dynamical
equations describing a set of N coupled LCOs are:

dVi(t)

dt
= λi[VMi − Vi(t)]ϵi(t)− γiVi(t)[1− ϵi(t)] +

N∑
j=1

βij [1− ϵj(t)] , (1)

where λi and γi are coefficients related to the electric components of the RC cir-
cuits and are given by λi =

1
(Rλi+Rγi)Ci

and γi =
1

RγiCi
. By integrating Eq. (1) and

taking into account the thresholds introduced above, the natural period of an LCO,
i.e., when it is not coupled to other LCOs, might be straightforwardly computed as
T0i = T0λi + T0γi = (Rλi + 2Rγi)Ci ln 2, where T0λi =

ln 2
λi

and T0γi =
ln 2
γi

are, respec-

tively, the lasting time for the charge and the discharge when there is no action on
the LCOi by other LCOs. A simple inspection of Eq. (1) shows that both charging
and discharging stages might be modified by the effect of the coupling with other
LCO(s). The charging and the discharging times might be shortened or lengthened
respectively when the pulsatile action due to the light of other LCOs takes place.

2.2 Integrate-and-fire oscillators

These oscillators are very well-known due to their simplicity and the easy way in which
they achieve synchronization, as proved in [12] for identical globally coupled IFOs.
The dynamics of an IFO is very simple and might be described in terms of some real
valued state variable, increasing monotonically up to a threshold (Vi = 1). When the
threshold is reached, the IFO relaxes to its baseline (Vi = 0) firing an instantaneous
pulse that affects the dynamics of the IFOs coupled to it in an excitatory way, i.e.,
shortening the duration to reach their respective thresholds [38]. In its pristine form,
a group of N IFOs is described by

dVi(t)

dt
= Ii − ηiVi(t), 0 ≤ Vi(t) ≤ 1, i = 1, . . . , N . (2)
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The oscillators are pulse-coupled and whether the IFOj reaches its threshold, it fires
and the variables Vi of all the other IFOs are modified by adding the quantity βij but
not exceeding the threshold Vi = 1, i.e., Vi(t

+) = min(1, Vi(t) + βij). A general cou-
pling scheme in which it is possible that a set of Nf < N IFOs achieve simultaneously
their thresholds, implies that IFOi modifies its dynamics in the form:

If {Vj(t) = 1} =⇒ Vi(t
+) = min

1, Vi(t) +

Nf∑
j=1

βij

 ∧
{
Vj(t

+) = 0
}

, (3)

where j = 1, . . . , Nf . Hereinafter, it is understood that the above mentioned condition
is applied to all the equations related to IFOs, i.e., Eqs. (5), (7) and (9). The meaning
of βij is the same as that in the LCOs’ case. The integration of Eq. (2) gives the natural

period of an IFO: T0i =
1
ηi

ln Ii
Ii−ηi

. As we wish to compare LCOs and IFOs, we can

modify the IFOs’ equations in order to put them in terms of the same variables and
parameters used for the LCOs. Thus, the equations describing the dynamics of N
IFOs might be rewritten as:

dVi(t)

dt
= λ′

i[VMi − Vi(t)],
VMi

3
≤ Vi(t) ≤

2VMi

3
, (4)

with λ′
i =

1
T0i

= λi

1+RγiCiλi
.

When IFOs are coupled, we have similarly to Eq. (3)

If

{
Vj(t) =

2VMj

3

}
=⇒ Vi(t

+) = min

2VMi

3
, Vi(t) +

Nf∑
j=1

β′
ij

∧
{
Vj(t

+) =
VMj

3

}
.

(5)
In order that coupling strength may have the same features in LCOs and IFOs, β′

ij

might be written in terms of that for the LCOs as β′
ij = βijT0γj = βijRγjCj ln 2.

Consequently, we have the equations governing the IFOs with the same characteris-
tics of the LCOs. Thus, a comparison between LCOs and IFOs is now feasible. The
typical values used in this work for the parameters are VM = 9.0 V, Rλ = 100.0 kΩ,
Rγ = 1.6 kΩ, and C = 0.47 µF.

2.3 Mean-field coupling

Since the pioneering work of Winfree [39] and Kuramoto [40] concerning the mean-
field approach to study coupled oscillators, this concept has significantly advanced and
developed when applying to maps [41–43] and continuous systems exhibiting chaotic
behavior [44–46]. Numerous studies used this approach to describe synchronization
in different kinds of systems [47–49], in particular in pulse coupled oscillators [12].
We use this approach by considering that all the oscillators are globally coupled (all-
to-all coupling) and the mean-field acts in such a way that we can consider a single
value for the coupling strength among all the oscillators. This concept is represented
in a simple fashion in Fig. 1(a), where the most important fact is the uniformity of
the coupling strength between each pair of oscillators, i.e., the coupling strength is
independent of the oscillators’ position in space and has a unique value. Note that
for all these cases, we consider bidirectional and symmetric coupling whose value is
given by β

N . Thus, the equations describing globally coupled LCOs under a mean-field
approach are:

dVi(t)

dt
= λi[VMi − Vi(t)]ϵi(t)− γiVi(t)[1− ϵi(t)] +

β

N

N∑
j=1

[1− ϵj(t)] , (6)
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while, for IFOs, the equations are always given by Eq. (4) with the condition that:

If

{
Vj(t) =

2VMj

3

}
=⇒ Vi(t

+) = min

(
2VMi

3
, Vi(t) + β′Nf

N

)
∧
{
Vj(t

+) =
VMj

3

}
.

(7)

(a) (b)

Fig. 1. Representation of all-to-all coupled oscillators (a) under a mean-field approach where
the coupling strength is the same regardless the position of the oscillators or the distances
between them. (b) Under an approach considering the coupling as distance-dependent.

2.4 Distance-dependent coupling

In order to study all-to-all distance-dependent coupling between oscillators (Fig. 1(b)),
we firstly consider a “square” arena consisting of 2500 locations (50× 50 square cells);
each of which can be occupied by an oscillator. Experimentally, the coupling strength
(β) is found to be dependent on the distance (r) between the oscillators, as βij ∝ 1

rαij
,

where the exponent α was found to take the value 2.11 [29]. Hence, the equations
governing a system of globally coupled LCOs are given by:

dVi(t)

dt
= λi(VMi − Vi(t))ϵi(t)− γiVi(t)[1− ϵi(t)] + βref

N∑
j=1

[1− ϵj(t)]

(
rref
rij

)α

, (8)

where βref = 166, rref = 4.85 [cm] are respectively, the reference coupling strength
and the reference distance taken from the model validation [29]. We also consider
that minimal distance between LCOs is 1.8 cm, where this distance is determined by
using the relationship: rij = 1.8

√
(xi − xj)2 + (yi − yj)2 [cm].

The equations for IFOs are given by Eq. (4) with the condition:

If

{
Vj(t) =

2VMj

3

}
=⇒ Vi(t

+) = min

2VMi

3
, Vi(t) + β′

ref

Nf∑
j=1

(
rref
rij

)α


∧
{
Vj(t

+) =
VMj

3

}
, ∀i ̸= j . (9)

3 Method and results

We focus our work on nonidentical oscillators and how the differences among them
induce changes in their synchronous behaviour. We chose the following parameter
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values to determine λi and γi: Rγ = 1.6 kΩ, C = 0.47 µF, Rλi = 100 kΩ± σ, where
σ is a random number taking from a normal distribution with (µ = 0, σ2). Thus, we
characterize the difference among the oscillators by means of the relative standard
deviation σrel related to Rλi defined as σrel =

σ
100 kΩ .

According to the above mentioned parameter values, the oscillators’ natural peri-
ods take the value T0 = 33.62 ms±∆T , being ∆T the variation of the period related
to σrel.

With the aim of studying the synchronous behavior of globally coupled LCOs and
IFOs considering a mean-field coupling and a distance-dependent one, we performed,
for each situation, 100 simulations with random initial conditions and random oscilla-
tors’ positions, with between 2 and 25 oscillators characterized by the aforementioned
parameter values and the variations featured by σrel shown in Table 1. Concerning
the integration time, we limit this to 15000 firing events. For all numeric experi-
ments, we use a coupling strength β = 166. The number of numerical experiments
that we carried out for each kind of oscillators was 100 × 24 × 11 × 2 = 52800, al-
lowing statistical analyses. A particularly noteworthy feature is the small differences
among the oscillators. The aspects to be analyzed are the following: probability of
total synchronization, transients or synchronization time, and clustering.

Table 1. Chosen values of the variance related to Rλi and their consequent relative standard
deviation σrel.

σ2 [Ω2] 0 1 2 5 50 100 300 500 1000 3000 5000

σrel × 10−4 0 0.10 0.14 0.22 0.71 1.00 1.73 2.24 3.16 5.48 7.07

3.1 Probability of total synchronization

In order to study synchronization of coupled oscillators, we introduce the concept
of probability of total synchronization (PTS), defined as the ratio of the number of
trials in which all the oscillators achieve complete synchronization to the number of
total trials. We use two criteria to study synchronization: the first refers to almost
simultaneous firing events with constant phase differences, and the second evaluates
the equality of periods as the criterion for synchronization. We respectively denote
these criteria as the phase difference criterion (PDC) and the period criterion (PC).
PDC is very strong, in the sense that it only considers as synchronized those oscillators
flashing almost simultaneously and keeping their phase difference constant.

When considering a mean-field approach for LCOs and IFOs, we obtain numer-
ical results of the PTS using PDC and PC. Those results are shown in Fig. 2. We
observe that there are very slight differences concerning the PTS when the oscil-
lators are identical; in the case of LCOs (Fig. 2(a)), the PTS is mostly the same
regardless the use of PC or PDC and always greater than 80%; and for the IFOs
(Fig. 2(k)) PTS% ≈ 100% for both criteria and independent of N . Furthermore, for
IFOs, PTS% ≈ 100% , without regard to the intrinsic differences among the IFOs
characterized by σrel as seen in Fig. 2(l). This behavior of complete synchronization
in IFOs is in accordance with that obtained in [12,17,38]. For small LCOs’ differ-
ences σrel ≤ 0.71× 10−4, the PTS plummets dramatically for both criteria (Fig. 2(b)-
(c)). On the other hand, for σrel > 0.71× 10−4 (Fig. 2(d)-(j)) there is a tendency for
the PTS to increase, especially when considering PC. The differences exhibited on
PTS values when using PC and PDC are due to the fact that in the PC case, anti-
synchronization and phase synchronization are also included.
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Fig. 2. Probability of total synchronization (PTS) in percentage as a function of N for
a mean-field approach, using the PC (gray circles) and PDC (black squares) for different
σrel related to LCOs (a) 0 (identical), (b) 0.10×10−4, (c) 0.22×10−4, (d) 0.71×10−4, (e)
1.00×10−4, (f) 1.73×10−4, (g) 2.24×10−4, (h) 3.16×10−4, (i) 5.48×10−4, (j) 7.07×10−4,
and related to IFOs (k) 0 (identical), and (l) 7.07×10−4.

When the coupling depends on the distance, there is a major change in the os-
cillators’ behavior as shown in Fig. 3, where the PTS falls sharply with N even for
identical LCOs (Fig. 3(a)) and IFOs (Fig. 3(k)). For both types of oscillators, the
intrinsic differences σrel exacerbate the PTS fall as seen in the sequence Fig. 3(b)-(j)
for LCOs and in Fig. 3(l) for IFOs. According to the shape in which PTS plum-
mets, we can adjust the data of each kind of oscillators and for each criterion to an
exponential function PTS(N) = PTS(2)e−k(N−2), where PTS(N) is the probability
of total synchronization when the set is composed of N oscillators. It is clear that
PTS(2) declines with σrel.
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Fig. 3. Idem as Fig. 2 but for a distance-dependent coupling.
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3.2 Transients

An interesting issue when studying synchronization is that related to the transient,
i.e., the time in which all the elements of the system synchronize. Transients or syn-
chronization times were studied numerically in locally coupled LCOs [50] and IFOs
[17], and in identical globally coupled LCOs and IFOs [51]. In order to study tran-
sients, we consider PDC as the criterion to determine whether or not a set of os-
cillators achieves total synchronization. When the coupling is a mean-field one, we
observe in the scatter plots of Fig. 4 that for identical LCOs (Fig. 4(a)) and IFOs
(Fig. 4(e)), mostly the whole populations synchronize, in accordance with the state-
ment in Sect. 3.1. Note that circles’ sizes are proportional to the PTS in percentage.
The transient grows with N but the mean values are small for both cases. On the con-
trary, when we consider the differences σrel, we observe for LCOs that transient swells
significatively with N but also, PTS slumps with N . When the coupling depends on
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Fig. 4. Synchronization time as a function of N for globally coupled LCOs (top) and IFOs
(bottom) being the coupling a mean-field one, when the differences σrel are: (a) and (e)
0 (identical), (b) and ((f) 0.10×10−4, (c) and (g) 2.24×10−4, and (d) and (h) 7.07×10−4.
The size of the circles are proportional to PTS and the error bars represent the standard
deviation.

the distance between oscillators, synchronization time escalates even when the oscilla-
tors are identical (Fig. 5(a) and (f)). The case of identical IFOs is dramatic inasmuch
as populations with N > 8 implies noughts for the PTS. The same behavior in both
kind of oscillators is observed when the diferences are σrel = 0.10× 10−4 (Fig. 5(b)
and (f)), σrel = 2.24× 10−4 (Fig. 5(c) and (g)), and σrel = 7.07× 10−4 (Fig. 5(d) and
(h)). It is remarkable that complete synchronization is not usual when the coupling
is distance-dependent.

3.3 Clustering

A great number of works dealing with clustering can be found in the literature and
in diverse fields, going from biological phenomena related to insects behavior [52] to
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Fig. 5. Idem as Fig. 4 but for a distance-dependent coupling.

physical ones [53], including several applications to networks [54–56] and synchroniza-
tion [57–59]. Clustering might be defined as the coherent groups formation as a result
of the interaction between the elements of a population, being this phenomenon a
form of self-organization [3].

We analyze the clustering behavior on populations of LCOs and IFOs when the
set of oscillators does not necessarily achieve total synchronization (all the oscillators
synchronized). In order to study clustering, we use PC as the criterion to determine
the clusters’ features, i.e., we consider a cluster as an ensemble of synchronized os-
cillators sharing the same period. We choose four features to describe the clustering,
namely:

Mean fraction of aggregated individuals: represents the mean value of the ratio of the
oscillators who are part of a cluster compared to the total population
evaluated for all performed experiments.

Normalized mean size of the biggest cluster: is the mean value of the ratio between
the biggest cluster found in each experiment and the whole population
of oscillators.

Mean number of clusters: describes the mean value of the number of clusters found
in each experiment.

Mean size of clusters: represents the averaged value of the clusters’ size found in each
experiment.

As in the precedent analysis, we consider populations of oscillators ranging from
2 to 25 for which we perform 100 simulations with random initial conditions. We
compute the clustering features, some of those are shown in Fig. 6. Considering mean-
field coupled LCOs, we observe strong changes concerning the fraction of clustered
oscillators (first row of Fig. 6) and the normalized size of the biggest cluster (third
row of the Fig. 6) even for very small differences σrel = 0.10× 10−4 as shown in
Fig. 6(b) where the fraction of clustered LCOs drops for N in-between 3 and 8 and
then, it climbs with N ; in the case of the normalized biggest cluster (Fig. 6(j)), it
drops until N = 7 and then, it levels out at around 0.5. For σrel = 2.24× 10−4 and
σrel = 7.07× 10−4 (Fig. 6(c)-(d) and (k)-(l)), there is a sharp fall until N = 5 and
then these quantities grow intermittently with N , reaching in some cases values near
to 1.0.
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Fig. 6. Some clustering features as a function of the population size when the LCOs (first and
third rows) and IFOs (second and fourth rows) are globally coupled considering a mean-field
approach and differences given by σrel = 0 (identical), first column, i.e., (a), (e), (i) and (m);
σrel = 0.10× 10−4, second column, (b), (f), (j) and (n); σrel = 2.24× 10−4, third column,
(c), (g), (k) and (o); σrel = 7.07× 10−4, fourth column, (d), (h), (l) and (p). Error bars are
related to the standard deviation.

In the case of mean-field coupled IFOs, there are no changes neither in the fraction
of clustered IFOs, nor in the size of the biggest cluster, regardless the value of σrel. In
other words, a system of globally coupled IFOs under a mean-field coupling always
achieves total synchronization.

When the coupling is distance-dependent, the clustering behavior is quite differ-
ent compared to that related to mean-field coupling as shown in Fig. 7. For identi-
cal LCOs and σrel = 0.10× 10−4, both the mean fraction of aggregated individuals
(Fig. 7(b)) and the normalized size of the biggest cluster (Fig. 7(j)) fall steadily
with N . When σrel = 2.24× 10−4, the fraction of clustered LCOs drops markedly
for N = 2, then it climbs until N = 4 and eventually, it falls off almost regularly
(Fig. 7(c)). Finally, when σrel = 7.07× 10−4, the fraction of clustered LCOs plum-
mets dramatically for N = 2, then it increases until N = 9 and for N ≥ 10, it slightly
slackens (Fig. 7(d)). Concerning the normalized size of the biggest cluster, it varies
inversely as N (Fig. 7(i)-(l)).

Clustering of distance-dependent coupled IFOs shows that for identical IFOs and
small differences, the fraction of clustered IFOs decreases for small N and then it
levels out at around 0.63 for larger N (Fig. 7(e)-(g)); for σrel = 7.07× 10−4, a similar
behavior but with a sharp fall for small N is observed (Fig. 7(h)) followed by a
stabilization at around 0.63. Finally, concerning the normalized size of the biggest
cluster for IFOs, in all cases, it declines with N (Fig. 7(m)-(p)).

4 Discussion

From the results shown in Sect 3, we can perform a statistical comparison among
the oscillators and the both types of coupling taking into account all the used values
for σrel. In other words, with the aim of comparing, we express the mean values
concerning all the studied quantities in Sect 3 as a function of σrel.
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Fig. 7. Idem as Fig. 6 but for a distance-dependent coupling.

In order to compare the PTS, we compute the mean value of this quantity (⟨PTS⟩)
for all the configurations and then we express this as a function of σrel as shown in
Fig. 8. Concerning LCOs and mean-field coupling, from a statistical point of view,
⟨PTS⟩ declines dramatically for very small differences whether using PDC or PC,
then ⟨PTS⟩ levels off when using PDC and increases until it reaches around 70%
when using PC. When the coupling for the LCOs is distance-dependent, ⟨PTS⟩ is
around 20% for identical LCOs and then it falls down slightly with σrel as shown in
Fig. 8(b); note that in this case, there is not a significative difference between the
two criteria (PDC and PC). The ⟨PTS⟩ is mostly 100% for mean-field coupled IFOs
and it is not affected by σrel as Fig. 8(c) shows. When the coupling among IFOs is
distance-dependent, ⟨PTS⟩ is small even for σrel = 0; we observe from Fig. 8(d) that
⟨PTS⟩ falters slightly with σrel.

The comparison of transients is summarized in Fig. 9 (left black vertical axis for
LCOs, and right gray vertical axis for IFOs), where for mean-field coupling, the LCOs
and the IFOs behaviors differ in several respects: the mean value of the transient is
quite larger for LCOs (it may exceed 6000 firing events) than for IFOs, where the
synchronization time never exceeds 120 firing events. Additionally, we also see from
Fig. 9(a) that circles’ sizes (proportional to ⟨PTS⟩) are quite smaller for LCOs. A
last observation is the statistical trend to diminish the transient with increasing σrel

but with ⟨PTS⟩ < 40%. For a distance-dependent coupling, there is no specific trend
neither for LCOs, nor for IFOs as it is shown in Fig. 9(b).

In order to compare the changes in the clustering features among oscillators, we
computed mean values of the four considered quantities taking into account all the
configurations for the computation of these mean values. We represent these quantities
as a function of σrel as shown in Fig. 10.

Concerning the mean fraction of aggregated oscillators, when the coupling is a
mean-field one, we observe from Fig. 10(a) that for LCOs, this quantity climbs with
σrel and then it levels out at around 0.9. For IFOs, the mean fraction of aggregated
individuals is always 1.0 regardless of the σrel values. On the contrary, when the
coupling depends on the distance, the mean fraction of clustered oscillators decreases
with σrel uniformly for LCOs and slightly for IFOs (Fig. 10(b)).
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Fig. 8. Comparison using ⟨PTS⟩ in percentage as a function of the differences among oscil-
lators σrel considering four situations of globally coupled oscillators: (top: LCOs) (a) mean-
field and (b) distance-dependent coupling. (bottom: IFOs) (c) mean-field and (d) distance-
dependent coupling. The gray circles indicate the use of PC and the black squares, that of
PDC. Error bars represent the mean squared errors.
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Fig. 9. Comparison using the mean synchronization time as a function of the differences
among the oscillators σrel. (a) Mean field coupling, and (b) distance-dependent coupling.
The left vertical axis and the black circles describe the LCOs, whereas the right vertical axis
and the gray circles describe the IFOs. The size of the circles is related to PTS. Error bars
represent the standard deviation.

Regarding to the normalized mean size of the biggest cluster, we see that this
quantity behaves similarly as the mean fraction of clustered oscillators under a mean-
field coupling, i.e., for LCOs it rises with σrel until it reaches a value around 0.8. For
the IFOs, this quantity is always equal to 1, that is still a manifestation of total syn-
chronization (Fig. 10(c)). When the coupling is distance-dependent, the normalized
mean size of the biggest cluster for IFOs is practically constant and close to 0.35 and
for LCOs it decreases regularly with σrel and approaches the value 0.35 (Fig. 10(d)).

With respect to the mean size of clusters, for mean-field coupled IFOs, the value of
this quantity is constant and approximately equal to 13.5 that is the result to perform∑25

i=2 i/24, whereas for LCOs it increases until around 9 and then it slightly declines
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with the trend to level out near to 8 (Fig. 10(e)). When the coupling depends on the
distance, the mean size of clusters for IFOs remains constant near to 2.4, whereas for
LCOs, it falls uniformly with σrel towards 2.4 (Fig. 10(f)).

In regard to the mean number of clusters when the coupling corresponds to a
mean-field one, for IFOs, this quantity does not change with σrel and takes the value
1 as expected (Fig. 10(g)). For LCOs, the mean number of clusters drops with σrel and
then it levels off. When the coupling is distance-dependent, for both LCOs and IFOs,
the mean number of clusters remains practically constant as shown in Fig. 10(h). We
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Fig. 10. Comparison using the clustering features as a function of the differences among
the oscillators σrel. Mean fraction of aggregated oscillators for (a) mean-field, and (b)
distance-dependent coupling. Normalized size of the biggest cluster for (c) mean-field, and
(d) distance-dependent coupling. Mean size of clusters for (e) mean-field, and (f) distance-
dependent coupling. Mean number of clusters for (g) mean-field, and (h) distance-dependent
coupling. In all cases, the LCOs’ features are characterized by black squares and those to
IFOs by gray circles. Error bars are related to mean squared errors.

finish the comparison by constructing a table that summarizes the substantial changes
in ⟨PTS⟩, synchronization time, and clustering features when two configurations are
compared (see Table 2).

Table 2. Comparison of different coupling configurations of LCOs and IFOs and the possible
great changes concerning the ⟨PTS⟩, the synchronization time and the clustering features.
The check mark points out the existence of an important change in the concerned variable.

configurations comparison ⟨PTS⟩ sync. time clustering
LCOs mean-field vs. LCOs distance-dependent X X X
LCOs mean-field vs. IFOs mean-field X X X
LCOs mean-field vs. IFOs distance-dependent X X X
LCOs distance-dependent vs. IFOs mean-field X X X
LCOs distance-dependent vs. IFOs distance-dependent X
IFOs mean-field vs. IFOs distance-dependent X X X
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5 Conclusions and perspectives

The numerical toil performed in this work allows us to compare the synchronous and
clustering behavior on four different configurations of pulse-coupled oscillators. In
almost all cases, we found important differences despite those are similar in several
respects. We remark that for mean-field coupled IFOs, the sets of these coupled oscil-
lators always achieve total synchronization and in this sense, it is natural that they
have been used to model different kinds of synchronous systems. Nevertheless, IFOs
are not realistic oscillators. On the contrary, LCOs are realistic oscillators and de-
spite they are quite similar to IFOs, their behavior is completely different, especially
when the set of oscillators is composed of slightly different LCOs. Another important
aspect that deserves to be pointed out is the type of coupling. In real systems, the
coupling generally depends on the distance and consequently we should expect a clus-
ter formation of synchronized individuals, rather than synchronization of the whole
population. In summary, the use of real conditions (nonidentical oscillators without
instantaneous firing and coupled by means of a distance-dependent coupling) not
only allows us to obtain a better description of oscillatory systems but also shows an
increase in the diversity of collective dynamics. It is interesting to note that LCOs
and IFOs have a closer behavior when the coupling depends on the distance. The
possible existence of a transition from LCOs to IFOs when LCOs’ discharging time
decreases going towards zero deserves currently our attention because the elucidation
of this issue could helps us in the understanding of underlying aspects related to the
synchronous behavior of these oscillators. This work could also be complemented by
studying the influence of the coupling strength, noise and other dynamical aspects
such as the possibility of oscillators motion.

J.K. acknowledges the German ministry for education and research (BMBF) via the project
PROGRES. J.-L.D. is senior research associate from the Belgian National Fund for Scientific
Research (FNRS).
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37. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424(4-5), 175

(2006)
38. S. Bottani, Phys. Rev. E 54(3), 2334 (1996)
39. A.T. Winfree, J. Theor. Biol. 16, 15 (1967)
40. Y. Kuramoto, I. Nishikawa, J. Stat. Phys. 49(3-4), 569 (1987)
41. K. Kaneko, Prog. Theor. Phys. 74(5), 1033 (1985)
42. G. Perez, S. Sinha, H.A. Cerdeira, Physica D 63(3-4), 341 (1993)
43. A.S. Pikovsky, J. Kurths, Physica D 76(4), 411 (1994)
44. M. Banaji, P. Glendinning, Phys. Lett. A 251(5), 297 (1999)
45. I.Z. Kiss, Y. Zhai, J.L. Hudson, Phys. Rev. Lett. 88(23), 238301 (2002)
46. S. de Monte, F. d’Ovidio, E. Mosekilde, Phys. Rev. Lett. 90(5), 4102 (2003)
47. A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Europhys. Lett. 34(3), 165 (1996)
48. J.P. Gleeson, Europhys. Lett. 73(3), 328 (2006)
49. N.F. Rulkov, L. Tsimring, M.L. Larsen, M. Gabbay, Phys. Rev. E 74(5), 056205 (2006)
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