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Classifying Healthy and Preeclamptic Patients from
Recurrence-Based Cardiovascular Time Series

Using Complex Networks Methods
G.M. Ramı́rezÁvila, A. Gapelyuk, N. Marwan, H. Stepan, J. Kurths, Th. Walther and N. Wessel

Abstract—We analyze cardiovascular time series with the aim
of identifying patients suffering of preeclampsia, a pregnancy-
specific disorder causing maternal and fetal morbidity and
mortality. For that, we use a novel approach, namely theε-
recurrence networks applied to a phase space constructed by
means of the time series of the variabilities of the heart rate, and
the blood pressure (systolic and diastolic). Four network measures
are considered as parameters for our analysis: average path
length, mean coreness, global clustering coefficient, and scale-
local transitivity dimension. With these quantities, we perform a
quadratic discriminant analysis. This allows us to classify healthy
and preeclamptic patients with a sensitivity of 91.7% and a
specificity of 68.1%, thus validating the use of this method.

Index Terms—blood flow in cardiovascular system, cardiac
dynamics, hemodynamics, networks, time series analysis.

I. I NTRODUCTION

Preeclampsia (PE) is a major hypertensive disorder in
pregnant women also characterized by proteinuria for which
the pathophysiology remains unclear and constitutes a serious
risk for both the mother and the fetus. PE affects healthy
nulliparous women in a range between 2% and 7% worldwide
[1]. Several strategies are used in order to predict PE, among
them we can mention some biochemical markers, such as
fms-like tyrosine kinase 1 (sFlt-1), placental growth factor
(PlGF), soluble endoglin [2], [3], maternal autoantibody,the
angiotensin II type I receptor agonistic autoantibody (AT1-
AA) [4], the urinary biomarkers [5], noninvasive CV markers
[6] or the combination of some of those [7].

Detection of cardiovascular (CV) disorders has been con-
siderably improved due to both technological advances and
new methods of time series analysis. Nevertheless, there are
still difficulties that cannot be explained by standard data
analysis. Nonlinear data analysis and modeling methods of CV
physics allow to improve clinical diagnostics and also a better
understanding of CV regulation. One of the most important
aspects of these methods is that they focus on noninvasive
measured biosignals. Among the biosignals that CV physics
deals with are the heart rate variability (HRV), the variabilities
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of systolic blood pressure (SBPV) and diastolic blood pressure
(DBPV), and the baroreflex sensitivity (BRS).

Recurrence methods have recently become an useful tool in
order to study time series and acquired importance because
they do not need long time series to identify transitions in
dynamical systems and their use may be applied to a wide
diversity of systems and phenomena. Recently, the recurrence
concept has been extended to networks and novel time series
analysis methods arose [8]. In this work we apply the approach
of ε-recurrence networks to analyze noninvasive CV markers
with the aim of developing a classification method to identify
healthy subjects (control) from patients who develop PE.

II. M ETHODS

A. Clinical aspects

We consider for this study 96 patients with abnormal uterine
perfusion (AUP), followed by means of Doppler sonography
in the second trimester, between the 18th and the 26th week of
gestation (WOG) of pregnancy, at the Department of Obstet-
rics and Gynecology of the University of Leipzig. Immediately
after the Doppler examination, noninvasive continuous blood
pressure monitoring was conducted via finger cuff during 30
minutes. The continuous blood pressure curves were used
to extract the time series of beat-to-beat intervals, systolic
and diastolic blood pressures allowing us to obtain the CV
markers (HRV, SBPV, and DBPV). The length of the dataset
per variable is roughly 1600. At the time of examination,
the women were healthy, normotensive, without clinical signs
of cervical incompetence, and on no medication. After the
30th WOG, 24 patients developed PE. Further details on the
methodology can be found in [6].

B. Recurrence networks

The basic idea of time series analysis based on complex
network techniques lies on the fact that a time series might
be transformed into a complex network from which we can
extract the adjacency matrix allowing us to obtain local and
global network properties. The concept of recurrence applied
to a single trajectory of the dynamical system allows us
to obtain the recurrence matrix whose elements are given
by Ri,j = Θ(ε − ‖xi − xj‖), where Θ(·) represents the
Heaviside function,‖·‖ is a suitable norm, andε is a threshold
distance that should be chosen adequately according to the
characteristics of the embedded attractor into the phase space.
We interpret the recurrence matrixR as the adjacency matrix
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of an unweighted and undirected complex network, commonly
called theε-recurrence network which is associated with a
given time series. Possible self-loops must be avoided in this
network, thus a Kronecker delta must be subtracted from the
recurrence matrix and as a consequence, the elements of the
adjacency matrix for anε-recurrence network are:

Ai,j(ε) = Ri,j(ε)− δi,j , (1)

where theε-dependence is considered explicitly. There is not
a universal criterion for choosingε but the choice must be
made avoiding too small values that lead to a situation in
which there are not enough recurrence points, or too large
values implying that every vertex is connected with many other
vertices irrespective of their actual mutual proximity in phase
space [9]. Having reconstructed the adjacency matrixA from a
time series, we can apply appropriate networks characteristics
to analyze and obtain information of the underlying system.
In this work we focus our interest in four global network
measures: theAverage path length(L), that is the mean value
of the shortest geodetic path lengthsli,j considering all pair
of vertices(i, j); the Mean coreness(C≀), that is the average
of the corenesses (significance of a node and its “popularity”
in the network) of all the vertices [10]; theGlobal clustering
coefficient(C), that is the average of the clustering coefficient
of each vertex (ratio of triangles including vertexi and the
number of triples centered on vertexi where triple refers to
a pair (j, k) of vertices that are both linked withi, but not
necessarily mutually linked); and theScale local transitivity
dimension(DT ), defined asDT = log T

log(3/4) , being T the
transitivity (ratio of the number of triangles in the network
times three and the number of linked triples of vertices). These
four measures depend onε and have a global character. A
detailed description of networks and their properties can be
found in [11].

C. Data processing and statistics

In order to avoid artifacts such as double recognition of
beats, the original RR time series were filtered using a pre-
processing algorithm which first removes obvious recognition
errors; then applies an adaptive percent filter, and finally,an
adapting controlling filter [12]. With the aim of using a recur-
rence network approach, we consider the three CV markers
and some possible embeddings. An estimation of the coupling
structure of CV markers has been performed using nonlinear
additive autoregressive models with external input following
the idea of Granger causality [13]. This coupling analysis
shows that HRV, DBPV, and SBPV respond to respiration;
SBPV respond to DBPV and the latter to HRV. In our case,
we do not consider respiration; thus, the coupling structure
might be represented as in Fig. 1(a) where according to the
coupling scheme, there is a delay between the HRV, the DBPV,
and the SBPV. For simplicity we write down the coupling
structure as (HRV(t),DBPV(t + 1),SBPV(t+ 2)) or simply
H(t)D(t+ 1)S(t+ 2) ≡ 012.

We sought to predict whether or not a patient develops PE
using the CV markers embedded in a phase space determined
by the structure of coupling. We consider a minimalist as-
sumption in which the structure of coupling between HRV,
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Fig. 1. (a) Coupling structure considering that HRV drives the DBPV and
this in turn the SBPV (directed arrows from HRV to DBPV, and from DBPV
to SBPV). Note that when the variables are linked only for a line, it means that
these are coupled but without any delay. This might be written schematically
asH(t)D(t + 1)S(t + 2) ≡ 012; the latter number can change according to
the delay among the sequential variables HRV, DBPV, and SBPV, represented
asHDS. (b) All the other possibilities of coupling structures.

DBPV, and SBPV is equal in each subject of a group and
that this structure does not change during the measurement.
In this study, we set out to test all the possible structures of
coupling shown in Fig. 1 and a wide range of the threshold
ε going from0.01σ to 0.99σ beingσ the standard deviation
of the underlying process in the embedded phase space. From
a simple CV time series corresponding to each patient, we
construct a complex network for each possible structure of
coupling and each value ofε. Then, we compute the four
network measures: (C,L,C≀,DT ), and with these new measures
we perform an analysis to classify the groups of patients.
For that purpose, we firstly verify whether or not these new
parameters are significant by means of a Mann-WhitneyU-
test and considering a significance level of 5%; being the
null hypothesis that data in the vectors corresponding to
control and preeclamptic patients are independent samples
from identical continuous distributions with equal medians,
against the alternative that they do not have equal medians.

III. R ESULTS

As the approach is based on recurrence complex networks,
firstly we obtain the matricesR and A. A visualization of
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the associated networks, obtained using the medians of the
time series are shown in Fig. 2. These representations are
constructed using the coordinates of the nodes. An inspection
of these networks (PE and control) allows us to perceive
some differences between them as for example the existence
of more free nodes (more outliers from a statistical point of
view) in the case of the control group network compared to
the PE group network, and the apparent node degree that
seems to be higher in the control group network. Nonetheless,
this visualization inspection is just a first checkup that cannot
replace the quantification of the network measures.

(a) (b)

Fig. 2. (Color online) Visualization of the networks obtained using the time
series of the medians for both groups of patients (a) PE, and (b) control. The
visualization has been obtained by means of the software Pajek [14], with a
3-dim perspective and using all the nodes and their corresponding coordinates
into the phase spaceHDS(t).
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Fig. 3. (Color online) Phase plane structure of the couplingvs. ε showing
the significance levelp computed by means of a Mann-WhitneyU-test for
establishing differences between the control and PE groupsand using the
network measures (a)C, (b) L, (c) C≀, and (d)DT . The color code indicates
thep-values. Notice that some special pixel are used such as white (p ≥ 0.05;
H0 cannot be rejected), pink (it is not possible to computep-value; thus, the
p-value is undetermined), and black (minimump-value).

The results for each network measure are represented in
the phase plane, embedding (structure of coupling) vs.ε as
shown in Fig. 3. The color code indicates thep-values of the
statistical test when the null hypothesisH0 of equal medians
at 5% significance level is rejected. The white pixels denote
that there is no difference between both groups (p ≥ 0.05),
and pink ones, the impossibility to computep. On the contrary,
the black pixels represent the minimump-value among all the
possibilities on the phase plane.

According to Fig. 3, the significant values for each net-
work measure occur only for some coupling structures and
thresholdsε. Fig. 4 shows the same plane as in Fig. 3 but
considering the cases in which all the four network measures
are simultaneously significant, i.e.p < 0.05 (black pixels).
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Fig. 4. (Color online) Same phase plane as in Fig. 3 showing the situations
in which (a) the four considered network measures satisfy simultaneously the
condition p < 0.05 (black pixels). (b) Misclassification errors (color code)
in the classification of control and PE groups after a quadratic discriminant
analysis for the four network measures. The white pixels indicate that the
discriminant analysis cannot be performed and it is relatedto the fact that
for these cases, at least one of the network measures has an undetermined
p-value. The black pixel indicates the minimum value of the error.

The inspection of Fig. 4(a) shows that there are 22 situations
in which the four network measures satisfy simultaneously the
statistical significance test and we further restrict the analysis
to these selected cases which do not necessary correspond
to the lowerp-values. Now, considering these four measures
as the parameters for the classification of control and PE
groups, we perform a quadratic discriminant analysis for all
the possible structures of the coupling andε (Fig. 4(b)).

Table. I shows the statistical measures of the performance
of a binary classification test for the 22 selected cases. Such
measures are misclassification error rate (percentage of obser-
vations that are misclassified), sensitivity (proportion of true
positives that are correctly identified by the test), specificity
(proportion of true negatives correctly identified by the test),
positive predictive value (PPV), i.e. the proportion of patients
with positive test results who are correctly diagnosed, and
negative predictive value (NPV), i.e. the proportion of patients
with negative test results who are correctly diagnosed.

From Table I, we select the situation corresponding to a
coupling structure 120 andε = 0.61σ (bold fonts) whose
misclassification error is 20.1% giving consequently the best
values for the classification results, i. e. a sensitivity of91.7%,
a specificity of 68.1%, a PPV of 48.9%, and a NPV of 96.1%.

IV. CONCLUSION

The essential aspect of the approach used in this work
lies in its novelty when applying to CV signals, i.e. complex
biosignals time series that in their raw form are not useful for
classification, are transformed into recurrence networks from
which we extract several measures that allow a classification
with suitable results. In fact, after the choice of an adequate
structure of the coupling and the thresholdε, only one complex
network is constructed from the three CV markers for each per-
son and then, we quantify the network features that constitute
the parameters for the classification analysis. In summary,our
exploratory results show that the used approach constitutes a
useful tool to study such a classification problem.

Note that the analysis presented here is in some sense only
a first approximation of the recurrence networks approach.
We see for future research several ways of improvements,
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TABLE I
STATISTICAL MEASURES OF THE PERFORMANCE OF A BINARY CLASSIFICATION TEST CONSIDERING THE22 POSSIBLE SITUATIONS IN WHICH THE FOUR

NETWORK MEASURES SATISFY SIMULTANEOUSLY THE CONDITIONp < 0.05.

Structure of coupling ε [×σ] Misclassification [%] Sensitivity [%] Specificity [%] PPV [%] NPV [%]

001 0.39 40.3 79.2 40.3 30.7 85.3
0.40 31.2 79.2 58.3 38.78 89.4
0.41 34.0 89.5 44.4 34.4 91.4
0.61 29.2 79.2 62.5 41.3 90.0

010 0.40 28.5 83.3 59.7 40.8 91.5
012 0.40 29.2 83.3 58.3 40.0 91.3

0.41 36.8 87.5 38.9 32.3 90.3
101 0.40 34.0 83.3 48.6 35.1 89.7

0.41 38.2 87.5 36.1 31.3 89.7
102 0.39 41.0 79.2 38.9 30.2 84.8

0.40 34.7 83.3 47.2 34.5 89.5
0.41 40.3 83.3 36.1 30.3 86.7
0.61 29.2 83.3 58.3 40.0 91.3

120 0.39 45.8 79.2 29.2 27.1 80.8
0.40 34.0 91.7 40.3 33.9 93.6
0.41 36.1 91.7 36.1 32.3 92.9
0.61 20.1 91.7 68.1 48.9 96.1

201 0.39 42.4 83.3 31.9 29.0 85.2
0.40 38.2 75.0 48.6 32.7 85.4

210 0.39 46.1 79.2 30.6 27.5 81.5
0.40 32.6 87.5 47.2 35.6 91.9
0.41 36.1 87.5 40.3 32.8 90.6

as explained in the following. In spite of the minimalist
assumptions concerning the structure of the coupling, and just
one value ofε in order to avoid the ambiguities stated in [15],
our results give useful information for the classification and
are similar to those obtained in [6], thus validating our method.
The consideration of dynamic structures of the coupling (i.e.
temporal variations in the coupling structure) could improve
our results and also give us a deeper insight in the underlying
physiological processes. For that, it is necessary to design an
adaptive algorithm taking into account possible transitions in
several time windows. This method could be also useful as an
alternative to find the adequate structure of coupling.

The consideration of other qualitative aspects related to
the history of the patients (age, ethnicity, body mass index)
[16] and in general predisposing factors such as genetic [17],
behavioral [18] or environmental [19] could give additional
information to improve the classification analysis combined
with the technique used in this paper.

Our study follows the same line as previous works [6] in
which the biosignal analysis (in our case, the associated re-
currence complex network analysis) constitutes a noninvasive,
cheap and universal diagnostic approach whose utilization
offers new possibilities both in the understanding of PE patho-
genesis and on the envisaging of new therapeutic strategies.
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