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Abstract— We describe the electronic implemen-
tation of light-controlled oscillators (LCOs) and the
synchronous behavior that is observed when two or
more oscillators are in interaction. Numerical results
are presented for a small group of oscillators in a ring
configuration and for globally coupled LCOs.

I. I NTRODUCTION

Synchronization constitutes a common phenomenon
that is present both in natural systems and artificial
devices. It entails the interaction of two or more self-
sustained oscillators and it consists in an adjustment
of rhythms of these oscillating objects due to their
weak interaction [1]. Since the seminal works on
the synchronization property in a triode generator per-
formed by Eccles, Vincent, van der Pol and Apple-
ton [1], electric and electronic components have been
widely used to study synchronization (see e.g. [2],
[3], [4]) and other nonlinear phenomena (see e.g. [5],
[6], [7]). Most of these works deal with sinusoidal-
like oscillators that allow to perform analysis using
the same mathematical approaches found in classical
works (see e.g. [8], [9]). Among the numerous exam-
ples where synchronization is observed in nature, one
of the most astonishing is the flash synchronization
in certain firefly species [10]. The synchronous flash-
ing behavior can be understood as a self-organizing
process [11]. Our work deals with the synchronous
behavior of relaxation oscillators controlled by light
pulses, which mimic the firefly flashing behavior. In
§II we detail the electronics of an LCO, and in§III we
present a model describing the LCOs’ behavior and
some results for two interacting oscillators. Finally,
in §IV we examine the situation for small populations
of LCOs in a ring configuration and for globally cou-
pled oscillators.

II. LCO DESCRIPTION ANDMODEL

An LCO is a device made up of two RC cir-
cuits, a timer chip LM555 in its astable functioning
mode, infrared LEDs and photo-sensors [12], [13],
[14] (Fig. 1). The optoelectronic components allow
the LCOs to interact with one another. Basically, an
LCO is a relaxation oscillator in the sense that it has
two time scales characterized by the binary variable
ε(t): within each cycle there are intervals of slow
(charging stage,ε(t) = 1) and fast (discharging stage,
ε(t) = 0) motion. The form of the oscillation is very
different from a sinusoidal wave. The period is deter-
mined by the two external RC circuits and the output
waveform takes the form of a pulse signal with min-
imum and maximum values set atVM

3 and 2VM

3 res-
pectively,VM being the value of the supply voltage.
These threshold voltages determine the value ofε(t):

If V (t) = VM

3 ∧ ε(t) = 0 ⇒ ε(t+) = 1.

If V (t) = 2VM

3 ∧ ε(t) = 1 ⇒ ε(t+) = 0.
(1)

ResistorsRλ andRγ can be modified manually and
are used to set the two time delays constituting the
period. The period is the sum of the charging stage
related to the time constant1

λ
= (Rλ +Rγ)C, and the

discharging stage of the same capacitor that is related
to the time constant1

γ
= RγC. LEDs wired to the

output of the LM555 chip emit a light flash during the
discharging stage of the period. The light beam is di-
rected to the photo-sensors of the neighboring LCOs,
establishing an optical coupling characterized by the
variableβ. Depending on the phase difference bet-
ween interacting LCOs, a flash causes a neighbor to
shorten its charging stage and/or to lengthen its dis-
charging one. In our LCOs, resistors take the follow-
ing values:

Rλ = 68 kΩ + [0, 50] kΩ
Rγ = 1.2 kΩ + [0.0, 1.0] kΩ,



(a)

(b) (c)

Fig. 1. (a) Block diagram of the LCO. (b) View of a single
LCO. (c) Group of nine LCOs.

being the numbers between brackets, the interval
value that can be added to the resistors, and the value
that we use for the capacitor in order to perform mea-
surements with an oscilloscope isC = 0.47 µF which
produces a periodT ∼ 30 ms.

If we consider a system composed ofN LCOs, the
equation we use to model the voltage evolution for the
ith LCO is:

dVi(t)

dt
= λi(VMi − Vi(t))εi(t)

︸ ︷︷ ︸

charging term

− γiVi(t)[1 − εi(t)]
︸ ︷︷ ︸

discharging term

+
N∑

j=1

βijδij [1 − εj(t)]

︸ ︷︷ ︸

interaction term

, (2)

where

δij =

{
1 , if i 6= j and they may interact
0 , otherwise

indicates whether or not LCOsi andj interact.

III. SYNCHRONIZATION IN TWO LCOS

Using (2) we have been able to reproduce expe-
rimental results in 3 configurations, firstly with two
LCOs in a master–slave situation, secondly for mutual

interaction and finally for three LCOs in a line con-
figuration. The phase response curve (PRC) was ob-
tained and an analysis of two identical LCOs was per-
formed, showing that the system tends always towards
synchronization except for a specific initial condition
for which the interacting LCOs are in an unstable anti-
synchronous stationary state [14].

When performing experimental measurements, we
always have non- identical LCOs (the electronic com-
ponents values are not the same and are affected by
random errors, there are always some small perturba-
tions that cannot be controlled, and so on). In order
to study higher order synchronization for 2 LCOs, we
fixed the period of LCO1 and modified systematically
the period of our reference oscillator LCO2 (period
mismatch). Under these conditions, we definen : m

synchronization (n pulses of LCO2 within m oscilla-
tory cycles of LCO1) as the regime in whichphase-
lockingoccurs:

| nφ1 − mφ2 |< k. (3)

Here,k is a constant that guarantees a bounded phase
difference, which is equivalent to the condition of
frequency-locking[1] that can be expressed in terms
of the LCOs’ periods as:

〈T1〉 =
n

m
〈T2(ref)〉, (4)

where brackets mean time averaging. It is important
to note that in the case in which the LCO firings are al-
most simultaneous,k must be of the same order as the
discharging time. Arnold-tongue structures are use-
ful for the investigation of returned periodicities [15].
We have obtained from experimental and numerical
results the Arnold tongues in the plane (period de-
tuning, coupling strength) for two LCOs in interac-
tion (Fig. 2). We can observe from Fig. 2 that there
are two possible types of synchronization for the sys-
tem. The first involves phase-locking and frequency-
locking with the constraint that the period for both
LCOs must not change in the synchronous regime,
i.e. Ti =constant. The other possibility is thatmo-
dulationcan occur, i.e. the period of one of the oscil-
lators varies from cycle to cycle and the firings are not
equidistant [1]. We note that modulation appears for
large values of the interaction strength.

IV. SYNCHRONIZATION IN GROUPS OFLCOS

From the analytical, numerical and experimental
results, we see that LCOs’ behavior is very sensitive
to initial conditions in the sense that slight changes in
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Fig. 2. Arnold tongues obtained for two interacting LCOs
whenT1 = 33.620 ms is fixed andT2 is mismatched.

the initial conditions can drive the system to differ-
ent states or can lengthen or shorten the synchronous
time [14]. In practice it is not possible to control the
LCOs’ initial conditions precisely, so that a statisti-
cal analysis is necessary in order to study the syn-
chronous behavior of LCO populations. We have
studied two types of LCO groups: a ring configura-
tion and a global coupling between LCOs.

A. LCOs in a Ring Configuration

Here we suppose that the LCOs are identical and
that they can interact with two neighbors, the distance
between neighboring LCOs being constant, i.e. the
coupling strength is the same for each pair of LCOs.
We solved (2) numerically for rings of between 2 and
25 LCOs, varying the coupling strength fromβ = 10
to β = 1000 in steps of∆β = 10 (100 simulations
for each case). The numerical results we obtained, al-
low us to construct the surface shown in Fig. 3(a) and
its respective projection onto theβ–N plane, where
N is the number of LCOs. From Fig. 3(b), we note
that global synchrony (almost simultaneous firings) is
present over a broader range for weak coupling, ex-
cept for 5 LCOs, for which the percentage of total
synchronization events fell sharply. For greater cou-
pling strength, there is a tendency for the number of
successful total synchronization events to decrease as
the number of LCOs increases. Nevertheless, we must
point out that if we consider equality of periods and
any bounded phase difference, we find situations in
which certain stable patterns quickly arise in the sys-
tem, as shown in Fig. 4, in which not all the LCOs
flash at the same time. There are two groups of LCOs
that flash almost simultaneously: (i) LCOs 1, 2 and 3
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Fig. 3. (a) Surface generated with the percentage of total
synchronized events as a function of coupling strength
and the number of LCOs. (b) Projection onto the plane
Coupling strength vs. Number of LCOs.

(despite the phase slip that occur between the phases
of LCOs 1 and 3 respect to the phase of LCO2) and
(ii) LCOs 4 and 5.

B. Global Coupling

In order to study all-to-all coupling (each element
interacts with all others) between LCOs, we consi-
dered a “square” arena consisting of 2500 locations
(50 X 50 cells) each of which can be occupied by an
LCO. We performed 100 simulations with random ini-
tial conditions and random LCO positions, with bet-
ween 2 and 25 LCOs. Experimentally, the coupling
strength (β) is found to depend on the distance (r) bet-
ween the LCOs, asβij ∝ 1

rα
ij

, where the exponentα

was found to take the value 2.11. We considered ap-
proximately 15000 firing events for this study. Again,
we must distinguish between synchronization with al-
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Fig. 4. Results for five LCOs in a ring configuration. (a)
LCO’s period evolution. (b) Time difference evolution
between LCO’s firings. Coupling strengthβ = 280.

most simultaneous firings and synchronization with
phase-locking and frequency-locking. In Fig. 5(a) we
have computed the number of simulations for which
total synchronization is achieved (all the LCOs fire al-
most simultaneously). Moreover, Fig. 5(a) shows that
the number of LCOs plays an important role for the
synchronization phenomenon. Total synchronization
tends to zero as the number of LCOs increases. Ne-
vertheless, it is clear that the system contains several
synchronized clusters (Fig. 5(b) and (c)) that can give
rise to spatio-temporal patterns. Moreover, the density
of LCOs could also be important for global synchrony.
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Fig. 5. (a) Percentage of total synchronization events as
a function of the number of LCOs. (b) 25 LCOs ran-
domly distributed in the arena and synchronous clusters
(LCOs with same marker style) formed after approxi-
mately 15000 flashing events. (c) Phase difference dis-
tribution for the LCOs in (b).

V. CONCLUSIONS ANDPERSPECTIVES

Our work shows the richness that a simple elec-
tronic circuit can exhibit at the level of synchronous
behavior. For a small number of LCOs, the system
seems to have synchronization robustness, but when
the number of LCOs increases, the system tends to
form small synchronous clusters instead of achieving
global synchrony. This type of realistic device could
constitute a useful tool to understand synchronous be-
havior in some biological systems, especially in fire-
flies. On the other hand, the ability to synchronize
exhibited by the LCOs could find some applications
in collective robotics.
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[14] G. M. Raḿırez-Ávila, J. L. Guisset, and J. L. Deneubourg.
Synchronization in Light-Controlled Oscillators.Submitted to
Physica D, 2002.

[15] R. Stoop, K. Schindler, and L. A. Bunimovich. When Pyra-
midal Neurons Lock, When They Respond Chaotically, and
When They Like to Synchronize.Neurosci. Res.36, pp. 81–
91, 2000.


