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Abstract

This paper reports phase diagrams quantifying and contrasting the dynamical performance of the paradigmatic
piecewise-linear and cubic circuits of Chua. Although bothcircuits may be regarded as macroscopically isomorphic
over wide regions in control parameter space, we show that their microscopic structure displays a myriad of rather dis-
tinctive intrinsic features making them unique. Inhomogeneities embedded in periodic and chaotic phases complicate
some applications of the circuits but may also adequately act as realistic noise proxies in synchronization problems. In
addition, infinite cascades of spirals and hubs observed experimentally very recently in a related dissipative flow are
shown to be also present in both circuits of Chua, emerging however in a rather distinctive asymmetric way.
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1. Introduction

The paradigmatic circuit of Chua has been contin-
uously at the forefront of research during the last 25
years as a fruitful test-ground for theoretical and ex-
perimental advancements in nonlinear dynamics which
now fill several books [1, 2, 3, 4, 5] and many articles,
e.g. [6, 7, 8, 9, 10, 11, 12, 13]. Quite recently, this cir-
cuit has allowed the experimental observation of novel
complex structures and phenomena in parameter space,
like the so-called “shrimps” [14, 15, 16, 17] which were
observed both isolated [18, 19] or, in a slightly differ-
ent setup, forming infinite spirals connected to certain re-
markable “periodicity hubs” [20, 21, 13, 22]. The pop-
ularity of Chua’s circuit is enhanced by the great relia-
bility of electronic circuits and the excellent agreement
normally found between measured and predicted behav-
iors. In fact, this characteristic of circuits allows one to
probe novel devices and theories with very high accuracy
[20, 21, 22, 23].

According to a widespread opinion held about Chua’s
circuit (Fig. 1), both piecewise-linear and cubic circuits
display dynamical behaviors which are “similar” [1, 2,
3, 4, 5]. Such similarities are usually elicited by com-
paring relevant dynamical quantities for a few selected
parameters or, sometimes, by comparing bifurcation di-
agrams along specific sections of the control parameter
space. However, some applications, e.g. synchronization

of networks of identical and non-identical circuits, require
a much more specific assessment of the degree of similar-
ity of its constituents. Thus, synchronization of a large
number of Chua’s circuit leads one to ask the question
whose answer is the focal point of this work: how quan-
titatively similar is the dynamical performance of circuits
with piecewise-linear and cubic nonlinearities? In other
words, how complete is the operational isomorphism of
this pair of circuits? Could eventual differences in behav-
ior act as realistic proxies for the ubiquitous noise seen in
real-world systems? These are the question that we ad-
dress here.

To quantify how similar both circuits behave we com-
puted numerically high-resolution phase diagrams over
extended parameter ranges (see Figs. 2-5 below). Syn-
thetically, the general conclusion is that although on a
coarse-grained scale both nonlinearities may be regarded
asmacroscopicallyisomorphic over wide regions in con-
trol space independently of the parameters tuned, theirmi-
croscopicstructure displays rather distinctive features.

For instance, while Chua’s circuit contains periodicity
hubs similar to the ones reported recently in lasers and
other systems [13, 22, 23, 24, 25, 26], hubs in Chua’s
circuit present asymmetries and peculiarities which dis-
tinguishes them from everything seen so far (see below).
A plethora of microscopic inhomogeneities between peri-
odic and chaotic phases poses a number of challenges to
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Figure 1: The basic circuit leading to Eqs. (1a)-(1c), containing three
control parametersα = C2/C1, β = R2C2/L andγ, defined as a func-
tion of the four linear elementsC1, C2, L, andR in which the third
parameter depends on the linear resistorr0 in series with the inductor
(γ = Rr0C2/L).

efficient applications. In this work we contrast the control
parameter space of Chua’s circuits with piecewise-linear
and cubic nonlinearities and. The main messages here are
that (i) the widespread “equivalence” of both circuits is
in fact not valid and their dynamical behavior needs to
be carefully asserted for each specific application, (ii) the
phase diagrams of both circuits display a rather rich struc-
ture, with many features which are not yet understood the-
oretically.

2. The nonlinear circuits

As schematically shown in Fig. 1, Chua’s circuit con-
tains five linear elements (two capacitors, one inductor,
and two resistors) and a nonlinear element, the so-called
Chua’s diode (NR), playing the role of a negative resistor,
and which normally contains two additional parameters
[1, 2, 3, 4, 5]. In dimensionless form, the circuit is gov-
erned by the equations [6]:

dx
dt
= α

(

y− x− f (x)
)

, (1a)

dy
dt
= x− y+ z, (1b)

dz
dt
= −βy− γz, (1c)

where f (x) stands for the nonlinearity and, in terms of the
basic reactances, the three basic control parameters are

α =
C2

C1
, β =

R2C2

L
, γ =

Rr0C2

L
. (2)

Originally [27], the functionf (x) was taken as

f (x) = bx+ 1
2(a− b)

(

|x+ 1| − (|x− 1|
)

, (3)

wherea andb are free parameters controlling the diode
NR. But a popular variant involves replacing this
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Figure 2: (Color online) Parameter space isomorphism between the
piecewise linear (top) and cubic (bottom) circuits. The global structure
is quite similar and the magnitude of the Lyapunov exponentsis almost
identical. Hereβ = 1000.

piecewise-linear function by diode with a smooth cubic
characteristic [6]

f (x) = âx3 + b̂x, (4)

where â and b̂ are free parameters. This cubic pre-
serves the odd-symmetric character of the original piece-
wise function. The dynamical behavior of the piecewise-
linear variant has been studied extensively and found not
to capture correctly all features of a real circuit [29]. The
main relevance of the cubic nonlinearity is that nonlinear
devices are always smooth in real circuits [6]. Several
works dealt with a smooth nonlinearity in Chua’s oscil-
lator [30, 31, 32]. The cubic nonlinearity has been im-
plemented experimentally [29] and widely studied. For a
comprehensive survey see Tsuneda [6].
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Figure 3: (Color online) Lowβ isomorphism between phase diagrams for the piecewise-linear (top row) and cubic (bottom row) circuits for
β = 10,50, 100, from left to right. Although stretched over extended parameter regions, asβ varies the overall trend of the circuits remains
essentially the same. The leftmost column displays periodicity hubs, shown magnified in Fig. 4. Each panel displays 1200× 1200 Lyapunov
exponents.

To compare the performance of both circuits one first
needs to ensure that they operate as identically as possible.
To this end, we maximize the identity of the nonlinearities
f (x) above by suitably selecting the parameters ˆa andb̂ of
the cubic to match a given pair (a, b). This is done by a
least-square fit of the cubic to the piecewise linear func-
tion over an interval of approximation [−d, d], a procedure
which produces a parameter “bridge” among both circuits
[6, 33, 34]:

â = −35(d2 − 1)2(a− b)/(16d7), (5a)

b̂ = b+ (45d4 − 50d2 + 21)(a− b)/(16d5). (5b)

Following previous workers [2], we fixa = −8/7 ≃
−1.1428,b = −5/7 ≃ −0.7142, andd = 2 a choice that
givesâ = 0.0659 and̂b = −1.1671.

3. Phase diagrams

We start now by illustrating how changes in the reac-
tances affect solutions and stability of both circuits by
computing and comparing Lyapunov phase diagrams [13]
for them. Of particular interest is to compare changes in
shape and volume of both periodic and chaotic phases and,
more importantly, the details of their inner structure.

Figure 2 shows phase diagrams illustrating relevant por-
tions of theα × γ parameter plane for each circuit, a
plane containing particularly rich mixture of periodicity
and chaotic phases. As indicated by the color scales,
gray shadings signal parameter regions characterized by

periodic solutions (negative Lyapunov exponents), while
colors always mark chaotic phases (positive exponents).
The bluish coloration in Fig. 2(a) represents the piece-
wise linear circuit while the greenish hue is used for the
cubic nonlinearity. Each panel in our figures displays
1200× 1200 = 1.44 × 106 Lyapunov exponents. The
large pink domains indicate parameters for which most
initial conditions lead to unbounded solutions. Figure 2
was computed forβ = 1000 and presents “asymptotic”
phase diagrams, in the sense that they essentially remain
invariant whenβ is further increased. The basic struc-
ture in both panels of Fig. 2 show that while the over-
all coarse-grained distribution of chaos and periodicity in
Fig. 2 looks similar at first sight, their precise distribution
has a large number of small differences that are hard to
summarize efficiently with words.

Figure 3 illustrates parameter isomorphism when tun-
ing β from 10 to 100, i.e. when moving from the lowβ
region to the asymptotic limits shown in Fig. 2. Again,
while there is an overall agreement of the dynamics ob-
served for both circuits when increasingβ, the phase dia-
grams are not identical. In lose words, while it is possible
to argue the existence of a “macroscopic” isomorphism,
microscopically the phase space structure is different. The
impact of such differences depends on the application in-
tended for the circuits. For instance, arrays of coupled cir-
cuits have their asymptotic dynamical behavior strongly
influence by the precise structure of the individual oscil-
lators. In this sense, although complicating some appli-

3



6.1 7.6α
-0.2

0.05

γ

(a)
140.0 200.0α

-2.0

-0.15

γ

(b)
180.0 350.0α

0.2

0.8

γ

(c)

6.1 7.6α
-0.2

0.05

γ

(d)
140.0 200.0α

-2.0

-0.15

γ

(e)
180.0 350.0α

0.2

0.8

γ

(f)

Figure 4: (Color online) Finer details of the phase diagramsfor the piecewise-linear circuit (top row) and the cubic circuit (bottom row). The
leftmost panels show periodicity hubs [7, 13, 22] forβ = 10 while the other panels are forβ = 1000. Note the abundance of multistability,
particularly easy to recognize in the middle column panels.The white boxes in the rightmost panels are shown magnified inFig. 5.

cations of the circuits, inhomogeneities embedded in the
periodic and/or chaotic phases also act quite conveniently
as noise proxies in the stabilization of the synchronization
properties of large networks of oscillators [35].

Figure 4 compares three parameter regions where one
sees particularly intricate behaviors. The leftmost pan-
els illustrate the presence of spirals and periodicity hubs
which are typically observed for low values of the param-
eters, in the present case forβ = 10. Such hubs were re-
cently found to organize the stable dynamics into a regular
alternation of periodic and chaotic phases over large por-
tions of parameter space [7, 13, 22]. Although the global
views of parameter space presented in Figs. 2 and 3 were
selected to enhance similarities, there is obviously no ex-
act correspondence among the parameter domains shown.
In contrast, in Fig. 4 we compare the structure of identical
parameter windows for both circuits. While the compli-
cated alternation of stable chaos and periodicity seen in
the middle panels of Fig. 4 defies any attempt of describ-
ing them with words, requiring pictures to describe the

situation, the regular organization present in the rightmost
panel is considerably more tame. In fact, at first sight the
phase diagram in Fig. 4(c) might seem relatively similar
to the one in Fig. 4(f). However, that this is not the case is
illustrated in Fig. 5 which shows a rather different distri-
bution of dark islands of regular oscillations embedded in
the colored chaotic phases.

In connection with the hubs illustrated in Figs. 4(a)
and 4(d), we point out thatincompletehomoclinic scenar-
ios were recently measured ground-breaking experimental
studies by Al-Naimee et al. [36, 37] in a semiconductor
laser with optoelectronic feedback. Subsequently, such
laser system was found [25] to contain cascades of spi-
rals of stable oscillations and hubs which look identical to
the familiar ones observed when in presence ofcomplete
homoclinic scenarios. This all means that hubs like the
ones in Figs. 4(a) and 4(d) could be far more general then
theoretically presumed so far, being not necessarily lim-
ited by the dynamics usually attributed to Shilnikov’s the-
orem. This fact opens the possibility of using Chua’s cir-
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Figure 5: (Color online) Enlargements of the white boxes in Figs. 4(c) and 4(f) illustrating significant differences of the periodic phases. The
cubic circuit displays a cascade of “xiphopagus shrimps” not present in the piecewise-linear circuit. Differences in colors reflect the fact that the
color scale of each panel is not fixed but renormalized according the local minimum and maximum Lyapunov exponents. Each panel displays
2400× 2400 exponents.

cuit to measure complex distributions of oscillations and
addressing their nature, Shilnikov or non-Shilnikov.

4. Conclusions and outlook

In summary, comparison of the parameter space topol-
ogy between the piecewise-linear and cubic circuits re-
veals a number of similarities, an isomorphism, only when
regarded on a relatively coarse scale. As exemplified by
Fig. 5, the microscopic structure of both circuits displays
a myriad of quite distinctive intrinsic features which make
them individually rather unique. Since measurements
with Chua’s circuit are not difficult to carry out [1, 2, 3],
it would be interesting to check how faithfully experimen-
tal phase diagrams reproduce the distribution of periodic
and chaotic phases reported here. Of particular interest is
to check whether or not the cascade of “conjoined twin
shrimps” in Fig. 5(b) could be attributed to slight differ-
ences among the nonlinearities of both circuits.

One important result discussed here is the unequivocal
presence of periodicity hubs, spirals, and period-adding
cascades in both the piecewise-linear and the cubic cir-
cuits. This means that by suitably tuning parameters along
spirals characterized by oscillations with specific wave-
forms one may navigate towards hubs, focal accumula-
tion points, where it is possible to commute from an in-
coming to an outgoing spiral in an infinite number of
ways, each outgoing spiral corresponding to a charac-
teristic family of stable oscillations, periodic or not [see
Figs. 4(a) and (d)]. In certain situations, hubs are known
to be directly linked to Shilnikov’s homoclinic scenario
[13, 38, 39, 40, 41, 42, 43, 44, 45, 46]. The possibility of

non-Shilnikov scenarios has been discussed recently [25].
However, it is totally unclear yet whether or not hubs exist
in more general setups. There is no theory to predict the
presence of periodicity hubs and only numerical or experi-
mental work seems capable of detecting them. We remark
that while it is very tempting to associate periodicity hubs
with homoclinic orbits and a theorem by Shilnikov, nu-
merical work shows hubs and spirals not to exist in typical
flows that are textbook examples of the Shilnikov setup
[22]. This means that under Shilnikov conditions, hubs
can either exist or not. The discovery of hubs in Chua’s
circuit may be now used to study the elusive and theoret-
ically complex phenomena responsible for their genesis.
As illustrated by our phase diagrams, the parameter space
of both circuits contains a plethora of intricate features
whose detailed origin and global unfolding is a big chal-
lenge that remains to be accounted for theoretically.
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