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How similar is the performance of the cubic and the piecewrssar circuits of Chua?
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Abstract

This paper reports phase diagrams quantifying and coimgashe dynamical performance of the paradigmatic
piecewise-linear and cubic circuits of Chua. Although beiticuits may be regarded as macroscopically isomorphic
over wide regions in control parameter space, we show tleattficroscopic structure displays a myriad of rather dis-
tinctive intrinsic features making them unique. Inhomagjges embedded in periodic and chaotic phases complicate
some applications of the circuits but may also adequatdlgscealistic noise proxies in synchronization problems. |
addition, infinite cascades of spirals and hubs observedra®pntally very recently in a related dissipative flow are
shown to be also present in both circuits of Chua, emergimgetier in a rather distinctive asymmetric way.
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1. Introduction of networks of identical and non-identical circuits, regui
The paradigmatic circuit of Chua has been contin2 muc_h more spemﬁc assessment of thg dggree of similar
. ty of its constituents. Thus, synchronization of a large
uously at the forefront of research during the last 2 L >
: : number of Chua’s circuit leads one to ask the question
years as a fruitful test-ground for theoretical and ex-

. . . . ._whose answer is the focal point of this work: how quan-
perimental advancements in nonlinear dynamics which

row l several books 1,23 4. 51 and many ariles, &) ST 1 el b ol el
e.g.[6,7, 8,9, 10, 11, 12, 13]. Quite recently, this cir- P )

cuit has allowed the experimental observation of nove ords, how complete is the operational isomorphism of

. his pair of circuits? Could eventualftérences in behav-
complex structures and phenomena in parameter space

like the so-called “shrimps” [14, 15, 16, 17] which were iot act as realistic proxies for the ubiquitous noise seen in

observed both isolated [18, 19] or, in a slightlytfei- real-world systems? These are the question that we ad-

ent setup, forming infinite spirals connected to certain reEJIreSS here.

markable “periodicity hubs” [20, 21, 13, 22]. The pop- To quantify how similar both circuits behave we com-
ularity of Chua’s circuit is enhanced by the great relia-Puted numerically high-resolution phase diagrams over
bility of electronic circuits and the excellent agreementextended parameter ranges (see Figs. 2-5 below). Syn-
normally found between measured and predicted behafbetically, the general conclusion is that although on a
iors. In fact, this characteristic of circuits allows one tocoarse-grained scale both nonlinearities may be regarded
probe novel devices and theories with very high accuracfSmacroscopicallyjsomorphic over wide regions in con-
[20, 21, 22, 23]. trol space independently of the parameters tuned, thieir
According to a widespread opinion held about Chua'scroscopicstructure displays rather distinctive features.
circuit (Fig. 1), both piecewise-linear and cubic circuits For instance, while Chua’s circuit contains periodicity
display dynamical behaviors which are “similar” [1, 2, hubs similar to the ones reported recently in lasers and
3, 4, 5]. Such similarities are usually elicited by com-other systems [13, 22, 23, 24, 25, 26], hubs in Chua’s
paring relevant dynamical quantities for a few selectectircuit present asymmetries and peculiarities which dis-
parameters or, sometimes, by comparing bifurcation ditinguishes them from everything seen so far (see below).
agrams along specific sections of the control parametek plethora of microscopic inhomogeneities between peri-
space. However, some applications, e.g. synchronizatioodic and chaotic phases poses a number of challenges to
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Figure 1: The basic circuit leading to Egs. (1a)-(1c), cioitg three
control parameters = C,/Cy, 8 = R?C,/L andy, defined as a func-
tion of the four linear element§,, C,, L, andR in which the third
parameter depends on the linear resisgdn series with the inductor
(y = RoCy/L).
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efficient applications. In this work we contrast the control
parameter space of Chua’s circuits with piecewise-linear .
and cubic nonlinearities and. The main messages here are
that (i) the widespread “equivalence” of both circuits is
in fact not valid and their dynamical behavior needs to
be carefully asserted for each specific application, (&) th
phase diagrams of both circuits display a rather rich struc- ¥
ture, with many features which are not yet understood the-
oretically.
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2. Thenonlinear circuits

-1.7

As schematically shown in Fig. 1, Chua’s circuit con- 10 Y
tains five linear elements (two capacitors, one inductor, —_— =
and two resistors) and a nonlinear element, the so-called 280 o 80

Chua’s diode Rr), playing the role of a negative resistor,
and which normally contains two additional parametergrigure 2: (Color online) Parameter space isomorphism tetvibe

[1, 2, 3, 4, 5]. In dimensionless form, the circuit is gov- Piecewise linear (top) and cubic (bottom) circuits. Thebglostructure
erned by the equations [6]: is quite similar and the magnitude of the Lyapunov exponisrabnost

identical. Here3 = 1000.

dx

& = ov-x- O, G B |
q piecewise-linear function by diode with a smooth cubic
d_i’ = X-y+2 (1b)  characteristic [6]

3_: - py-yz (10) f(x) = &3¢ + bx (4)

wheref(x) stands for the nonlinearity and, in terms of theWhere dandb are free. parameters.  This _Cl_Jb'C pre-
basic reactances, the three basic control parameters areS€TVeS the odd-symmetric character of the original piece-
wise function. The dynamical behavior of the piecewise-
Co R2C, RroCo linear variant has been studied extensively and found not
Cc - Y= @ capture correctly all features of a real circuit [29]. The
main relevance of the cubic nonlinearity is that nonlinear
devices are always smooth in real circuits [6]. Several
f(X) = bx+ %(a— b)(Ix+ 1] — (x - 1)), 3) works dealt with a smooth nonlinearity in Chua’s oscil-
lator [30, 31, 32]. The cubic nonlinearity has been im-
wherea andb are free parameters controlling the diodeplemented experimentally [29] and widely studied. For a

Nr. But a popular variant involves replacing this comprehensive survey see Tsuneda [6].
2

Originally [27], the functionf(x) was taken as
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Figure 3: (Color online) Lows isomorphism between phase diagrams for the piecewiserliftep row) and cubic (bottom row) circuits for
B = 10,50,100, from left to right. Although stretched over extendedapaeter regions, gs varies the overall trend of the circuits remains
essentially the same. The leftmost column displays pegitydhubs, shown magnified in Fig. 4. Each panel displays 220@00 Lyapunov
exponents.

To compare the performance of both circuits one firsperiodic solutions (negative Lyapunov exponents), while
needs to ensure that they operate as identically as passibtmlors always mark chaotic phases (positive exponents).
To this end, we maximize the identity of the nonlinearitiesThe bluish coloration in Fig. 2(a) represents the piece-
f(X) above by suitably selecting the paramemeﬂndf) of  wise linear circuit while the greenish hue is used for the
the cubic to match a given paia,(0). This is done by a cubic nonlinearity. Each panel in our figures displays
least-square fit of the cubic to the piecewise linear func1200x 1200 = 1.44 x 10° Lyapunov exponents. The
tion over an interval of approximatior-fl, d], a procedure large pink domains indicate parameters for which most
which produces a parameter “bridge” among both circuitsnitial conditions lead to unbounded solutions. Figure 2

[6, 33, 34]: was computed fop = 1000 and presents “asymptotic”
R ) ) ; phase diagrams, in the sense that they essentially remain
a = -35(@°-1)(a-b)/(16d), (53)  invariant wheng is further increased. The basic struc-

b = b+ (45d* - 50d% + 21)@@ - b)/(164°). (Sb) ture in both panels of Fig. 2 show that while the over-
all coarse-grained distribution of chaos and periodiaity i
Fig. 2 looks similar at first sight, their precise distrilouti
has a large number of smallfiirences that are hard to
summarize ficiently with words.

Following previous workers [2], we fba = -8/7 =
-1.1428,b = -5/7 = -0.7142, andd = 2 a choice that
givesa = 0.0659 andb = —1.1671.

Figure 3 illustrates parameter isomorphism when tun-
ing B8 from 10 to 100, i.e. when moving from the lggv

We start now by illustrating how changes in the reac+egion to the asymptotic limits shown in Fig. 2. Again,
tances fect solutions and stability of both circuits by while there is an overall agreement of the dynamics ob-
computing and comparing Lyapunov phase diagrams [13erved for both circuits when increasiAgthe phase dia-
for them. Of particular interest is to compare changes ilgrams are not identical. In lose words, while it is possible
shape and volume of both periodic and chaotic phases ani, argue the existence of a “macroscopic” isomorphism,
more importantly, the details of their inner structure. microscopically the phase space structurefiedent. The

Figure 2 shows phase diagrams illustrating relevant pofimpact of such dterences depends on the application in-
tions of thea x y parameter plane for each circuit, a tended for the circuits. For instance, arrays of coupled cir
plane containing particularly rich mixture of periodicity cuits have their asymptotic dynamical behavior strongly
and chaotic phases. As indicated by the color scalesfluence by the precise structure of the individual oscil-
gray shadings signal parameter regions characterized ligtors. In this sense, although complicating some appli-
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Figure 4: (Color online) Finer details of the phase diagréonghe piecewise-linear circuit (top row) and the cubicuit (bottom row). The
leftmost panels show periodicity hubs [7, 13, 22] fo= 10 while the other panels are f6r= 1000. Note the abundance of multistability,
particularly easy to recognize in the middle column pan€he white boxes in the rightmost panels are shown magnifi€&ignb.

cations of the circuits, inhomogeneities embedded in theituation, the regular organization present in the rigtgimo
periodic andor chaotic phases also act quite convenientlypanel is considerably more tame. In fact, at first sight the
as noise proxies in the stabilization of the synchronizatio phase diagram in Fig. 4(c) might seem relatively similar
properties of large networks of oscillators [35]. to the one in Fig. 4(f). However, that this is not the case is
illustrated in Fig. 5 which shows a ratheifféirent distri-
Figure 4 compares three parameter regions where ongition of dark islands of regular oscillations embedded in
sees particularly intricate behaviors. The leftmost panthe colored chaotic phases.
els illustrate the presence of spirals and periodicity hubs
which are typically observed for low values of the param- In connection with the hubs illustrated in Figs. 4(a)
eters, in the present case o= 10. Such hubs were re- and 4(d), we point out thamcompletehomoclinic scenar-
cently found to organize the stable dynamics into a regulaios were recently measured ground-breaking experimental
alternation of periodic and chaotic phases over large posstudies by Al-Naimee et al. [36, 37] in a semiconductor
tions of parameter space [7, 13, 22]. Although the globalaser with optoelectronic feedback. Subsequently, such
views of parameter space presented in Figs. 2 and 3 welaser system was found [25] to contain cascades of spi-
selected to enhance similarities, there is obviously no exals of stable oscillations and hubs which look identical to
act correspondence among the parameter domains showhe familiar ones observed when in presenceafplete
In contrast, in Fig. 4 we compare the structure of identicahomoclinic scenarios. This all means that hubs like the
parameter windows for both circuits. While the compli- ones in Figs. 4(a) and 4(d) could be far more general then
cated alternation of stable chaos and periodicity seen itheoretically presumed so far, being not necessarily lim-
the middle panels of Fig. 4 defies any attempt of describited by the dynamics usually attributed to Shilnikov’s the-
ing them with words, requiring pictures to describe theorem. This fact opens the possibility of using Chua’s cir-

4



200.0 a 230.0 219.0 a 247.0

Figure 5: (Color online) Enlargements of the white boxes igsF4(c) and 4(f) illustrating significant fierences of the periodic phases. The
cubic circuit displays a cascade of “xiphopagus shrimpg”anesent in the piecewise-linear circuit.fi2rences in colors reflect the fact that the
color scale of each panel is not fixed but renormalized adegrihe local minimum and maximum Lyapunov exponents. Eaatepdisplays
2400x 2400 exponents.

cuit to measure complex distributions of oscillations andhon-Shilnikov scenarios has been discussed recently [25].
addressing their nature, Shilnikov or non-Shilnikov. However, itis totally unclear yet whether or not hubs exist
in more general setups. There is no theory to predict the
presence of periodicity hubs and only numerical or experi-
mental work seems capable of detecting them. We remark

In summary, comparison of the parameter space topothat while it is very tempting to associate periodicity hubs
ogy between the piecewise-linear and cubic circuits rewith homoclinic orbits and a theorem by Shilnikov, nu-
veals a number of similarities, an isomorphism, only whermerical work shows hubs and spirals not to exist in typical
regarded on a relatively coarse scale. As exemplified bffows that are textbook examples of the Shilnikov setup
Fig. 5, the microscopic structure of both circuits displays[22]. This means that under Shilnikov conditions, hubs
a myriad of quite distinctive intrinsic features which makecan either exist or not. The discovery of hubs in Chua’s
them individually rather unique. Since measurementgircuit may be now used to study the elusive and theoret-
with Chua’s circuit are not diicult to carry out [1, 2, 3], ically complex phenomena responsible for their genesis.
it would be interesting to check how faithfully experimen- As illustrated by our phase diagrams, the parameter space
tal phase diagrams reproduce the distribution of periodiof both circuits contains a plethora of intricate features
and chaotic phases reported here. Of particular interest Whose detailed origin and global unfolding is a big chal-
to check whether or not the cascade of “conjoined twirlenge that remains to be accounted for theoretically.
shrimps” in Fig. 5(b) could be attributed to slighttliir-
ences among the nonlinearities of both circuits.

One important result discussed here is the unequivoc

presence of periodicity hubs, spirals, and period-adding GMRA is supported by the German Academic Ex-

cascades in both the piecewise-linear and the cubic CiE’hange Service (DAAD). JACG is supported by CNPq
cuits. This means that by suitably tuning parameters alongraZ”’ and by the Air Force @ice of Scientific Research,

spirals characterized by oscillations with specific Wave'grant FA9550-07-1-0102. All computations were done in
forms one may navigate towards hubs, focal accumulafne computer clusters of the CESUP-UFRGS
tion points, where it is possible to commute from an in-

coming to an outgoing spiral in an infinite number of

ways, each outgoing spiral corresponding to a charadReferences

teristic family of stable oscillations, periodic or not ¢se y ) , , )
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