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It is urgently aimed in prenatal medicine to identify pregnancies, which develop life-threatening preeclamp-
sia prior to the manifestation of the disease. Here, we use recurrence-based methods to distinguish such
pregnancies already in the second trimester, using the following cardiovascular time series: the variability
of heart rate and systolic and diastolic blood pressures. We perform recurrence quantification analysis
(RQA), in addition to a novel approach, ε-recurrence networks, applied to a phase space constructed by
means of these time series. We examine all possible coupling structures in a phase space constructed with
the above-mentioned biosignals. Several measures including recurrence rate, determinism, laminarity, trap-
ping time, and longest diagonal and vertical lines for the recurrence quantification analysis and average path
length, mean coreness, global clustering coefficient, assortativity, and scale local transitivity dimension for
the network measures are considered as parameters for our analysis. With these quantities, we perform a
quadratic discriminant analysis that allows us to classify healthy pregnancies and upcoming preeclamptic
patients with a sensitivity of 91.7% and a specificity of 45.8% in the case of RQA and 91.7% and 68% when
using ε-recurrence networks, respectively.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, a severe pathology called preeclampsia (PE) affects
healthy nulliparous women in a range between 2% and 7% worldwide
(Sibai et al., 2005). The main features of PE are severe hypertension
and proteinuria for which the pathophysiology is not well understood
at present. Several strategies are used in order to predict PE, among
which we can mention biochemical markers, such as fms-like tyrosine
kinase 1 (sFlt-1), placental growth factor (PlGF), soluble endoglin
(Ohkuchi et al., 2011; Rana et al., 2007), maternal autoantibody, angio-
tensin II type I receptor agonistic autoantibody (AT1-AA) (Siddiqui et al.,
2010), urinary biomarkers (Carty et al., 2011), noninvasive cardiovascu-
lar (CV) indicators (Malberg et al., 2007;Walther et al., 2006), or a com-
bination of the above (Stepan et al., 2008).

In recent years, recurrence methods based on recurrence plots
(RP) have been successfully used in different fields of natural sciences
sel).
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as physics (Ngamga et al., 2012) and biology (Angus et al., 2012), but
also to answer economic (Hirata andAihara, 2012) ormedical questions
(Wessel et al., 2009). Recurrence quantification analysis (RQA), in par-
ticular, constitutes a very useful tool for the description and analysis
of a systems diversity (Marwan, 2008; Marwan et al., 2007). More
recently, the recurrence concept has been extended to networks and
applied in novel time series analysis methods (Marwan et al., 2009),
finding several applications such as in paleoclimate modeling (Donges
et al., 2009).

The detection of cardiovascular disorders has been considerably im-
proved due to both technological advances and new methods of time
series analysis. Nevertheless, there are still unclear mechanisms that
cannot be explained by standard data analysis. Nonlinear data analysis
andmodelingmethods of CV physics allow to improve clinical diagnos-
tics and also a better understanding of CV regulation. One of the most
important aspects of these methods is that they focus on noninvasive
measured biosignals. Among the biosignals that CV physics deals with
are the heart rate variability (HRV) and the variabilities of systolic
blood pressure (SBPV) and diastolic blood pressure (DBPV).
women and preeclamptic patients from cardiovascular data using
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In this work, we apply the approach of RQA and ε-recurrence net-
works to analyze CV biosignals, obtained by noninvasive techniques,
with the aim of developing a classificationmethod to identify patients
who develop PE in a pool of pregnancies within the second trimester.

2. Methods

2.1. Clinical aspects

We considered for this study 96 pregnancies with abnormal uterine
perfusion (AUP), followed by means of Doppler sonography in the sec-
ond trimester, between the 18th and the 26thweek of gestation (WOG)
of pregnancy, at the Department of Obstetrics and Gynecology of the
University of Leipzig, Germany. Immediately after the Doppler exami-
nation, the blood pressure was measured noninvasively via finger cuff
for 30 min (sampling rate: 100 Hz, Portapres device model 2, BMI-TNO,
Amsterdam, The Netherlands). The continuous blood pressure curves
were used to extract the time series of beat-to-beat intervals and systol-
ic and diastolic blood pressures, allowing us to obtain the CV values
(HRV, SBPV, andDBPV). The length of the dataset per variable is roughly
of 1600 samples (heart beats). At the time of examination, the women
were healthy, normotensive, without clinical signs of cervical incompe-
tence, and on no medication. After the 30th WOG, 24 patients devel-
oped PE. Further details on the methodology can be found in Malberg
et al. (2007). We point out that the root mean square errors of heart
beats calculated from blood pressure curves (compared to ECG slope
detection) is about 5–6 ms (Suhrbier et al., 2006). Therefore, the compu-
tation of the beat-to-beat-intervals from the distal pulse wave measure-
ment as it has been performed in this paper is an acceptable alternative;
however, this has to be confirmed in another comparative study.

2.2. Recurrence methods

The concept of recurrence applied to a single trajectory of the dynam-
ical system allows us to obtain the recurrence matrix whose elements
are given by Ri,j = Θ(ε − ‖xi − xj‖), where Θ(⋅) represents the Heavi-
side function, ‖ ⋅ ‖ is a suitable norm, and ε is a threshold distance that
should be chosen adequately according to the characteristics of the
embedded attractor into the phase space. We use RQA and ε-recurrence
networks with the aim of distinguishing between healthy individuals
and patients with PE.

2.2.1. Recurrence quantification analysis
The RQA is a method of nonlinear data analysis that quantifies the

number and duration of recurrences of a dynamical system presented
by its state space trajectory. This method was developed by Zbilut and
Webber (1992) and extended by Marwan et al. (2002). Several mea-
sures might be used to quantify the time series of a system when
using RQA, such as the following: recurrence rate (RR), the percentage
of recurrence points in an RP, corresponding to the correlation sum; de-
terminism (DET), the percentage of recurrence points forming diagonal
lines; laminarity (LAM), the percentage of recurrence points forming
vertical lines; trapping time (TT), the average length of the vertical
lines; and some other self-explanatory measures such as longest diago-
nal line (LMAX) and longest vertical line (VMAX). Amore detailed descrip-
tion of these measures can be found in Marwan et al. (2007).

2.2.2. Recurrence networks
The basic idea of time series analysis based on complex network

techniques relies on the fact that a time series may be transformed
into a complex network from which we can extract the adjacency
matrix, allowing us to obtain local and global network properties
(Donner et al., 2011).We interpret the recurrencematrix R as the adja-
cencymatrix of an unweighted and undirected complex network, com-
monly called the ε-recurrencenetwork,which is associatedwith a given
time series. Possible self-loops must be avoided in this network; thus, a
Please cite this article as: Ramírez Ávila, G.M., et al., Classifying healthy
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Kronecker delta must be subtracted from the recurrence matrix. The
elements of the adjacency matrix for an ε-recurrence network are thus

Ai;j εð Þ ¼ Ri;j εð Þ−δi;j; ð1Þ

where the ε-dependence is considered explicitly as in the case of
RQA. There is no universal criterion for choosing ε, but the choice
must be made avoiding too small values, which lead to a situation in
which there are not enough recurrence points, or too large values,
implying that every vertex is connected with many other vertices
irrespective of their actual mutual proximity in phase space (Donner
et al., 2010b). Having reconstructed the adjacency matrix A from a
time series, we can apply appropriate network characteristics to ana-
lyze and obtain information on the underlying system (Donges et al.,
2012). In Appendix A, there is an explanation of how to obtain the adja-
cency matrix, the associated network, and the 4-element motifs. In this
work, we focus our interest on five global network measures: the aver-
age path length (L), which is the mean value of the shortest geodetic
path lengths li,j considering all pair of vertices (i,j); the mean coreness
C≀ð Þ, which is the average of the coreness (significance of a node and
its “popularity” in the network) of all the vertices (Batagelj and
Zaveršnik, 2002); the global clustering coefficient Cð Þ, which is the aver-
age of the clustering coefficient of each vertex (ratio of triangles includ-
ing vertex i and the number of triples centered on vertex i, where triple
refers to a pair (j,k) of vertices that are both linked with i, but not nec-
essarilymutually linked); the assortativity Að Þ, the tendency for vertices
in networks to be connected to other vertices that are like (or unlike)
them in some way (Newman, 2003); and the scale local transitivity
dimension DTð Þ, defined as DT ¼ logT

łog 3=4ð Þ, where T is the transitivity
(ratio of the number of triangles in the network times three and the
number of linked triples of vertices). These four measures depend on
ε and have a global character. A detailed description of networks and
their properties can be found in Boccaletti et al. (2006).

3. Data processing and statistics

Weuse an algorithm that avoids artifacts such as extrasystolic beats.
The original time series from consecutive Rwaves were filtered using a
preprocessing algorithm that first removes obvious recognition errors,
then applies an adaptive percent filter, and finally an adaptive control-
ling filter (Wessel et al., 2007). With the aim of using a recurrence
approach, we consider the three CV indicators and several possible em-
beddings. An estimation of the coupling structure of CV indicators has
been performed using nonlinear additive autoregressive models with
external input, following the idea of Granger causality (Riedl et al.,
2010). This coupling analysis shows that HRV, DBPV, and SBPV respond
to respiration; SBPV respond to DBPV and the latter to HRV. In our case,
we donot consider respiration; thus, the coupling structuremay be rep-
resented as in Fig. 1(a), where, according to the coupling scheme, there
is a delay between the HRV, the DBPV, and the SBPV. For simplicity, we
write down the coupling structure as (HRV(t), DBPV (t + 1), SBPV
(t + 2)), or simply H(t)D(t + 1)S(t + 2) ≡ 012.

We sought to predict whether or not a patient develops PE using the
CV indicators embedded in a phase space determined by the structure
of coupling. We consider a minimalist assumption in which the struc-
ture of coupling between HRV, DBPV, and SBPV is identical in each sub-
ject of a group and that this structure does not change during the
measurement. In this study, we set out to test all the possible structures
of coupling shown in Fig. 1 and a wide range of the threshold ε going
from 0.01σ to 0.99σ, where σ is the standard deviation of the underly-
ing process in the embedded phase space. From a simple CV time series
corresponding to each patient, we construct a complex network for
each possible structure of coupling and each value of ε. Then we com-
pute the four network measures: C;L; C≀;DTð Þ, and with these new
measures, we perform an analysis to classify the groups of individuals:
healthy and preeclamptic patients. For that purpose, we firstly verify
women and preeclamptic patients from cardiovascular data using
://dx.doi.org/10.1016/j.autneu.2013.05.003
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Fig. 1. (a) Coupling structure considering that HRV drives the DBPV and this in turn the SBPV (directed arrows from HRV to DBPV and from DBPV to SBPV). Note that when the
variables are linked only by a line, it means that these are coupled but without any delay. This might be written schematically as H(t)D(t + 1)S(t + 2) ≡ 012; the latter number
can change according to the delay among the sequential variables HRV, DBPV, and SBPV, represented as HDS. (b) All the other possibilities of coupling structures.
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whether or not these new parameters are significant by means of a
Mann–Whitney U-test and considering a significance level of 5%; here,
the null hypothesis is that the data corresponding to control and pre-
eclamptic patients are independent samples from identical continuous
distributions with equal medians, against the alternative that they do
not have equal medians.

3. Results

Firstly, for values of the threshold ε in the range of 0.01σ to 0.99σ,
we obtain the matrices R and A that enable us to perform RQA and
Please cite this article as: Ramírez Ávila, G.M., et al., Classifying healthy
recurrence and complex network methods, Auton. Neurosci. (2013), http
obtain the RP measures mentioned in Section 1 and the ε-recurrence
networks measures described in Section 2. As an example of the
networks obtained, Fig. 2 shows a visualization of the associated
networks, obtained using the medians of the time series for patients
exhibiting PE and control individuals. These representations are
constructed using the coordinates of the nodes. An inspection of these
networks (PE and control) allows us to perceive some differences
between them, as, for example, the existence of more free nodes
(more outliers from a statistical point of view) in the case of the control
group network compared to the PE group network and the apparent
node degree that seems to be higher in the control group network.
women and preeclamptic patients from cardiovascular data using
://dx.doi.org/10.1016/j.autneu.2013.05.003
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(a) (b)

Fig. 2. (Color online) Visualization of the networks obtained using the time series of the medians for both groups of individuals, (a) PE and (b) control. The visualization has been
obtained by means of the software Pajek (Pajek, 2011), with a 3-dimensional perspective and using all the nodes and their corresponding coordinates in the phase space HDS(t).
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Nonetheless, this visual inspection is just a first check that cannot
replace the quantification of the network measures.

The results for each RQA and networkmeasure are represented in the
phase plane, embedding (structure of the coupling) vs. ε, as shown in
Figs. 3 and 4, respectively. The color code indicates the p-values of the
statistical test when the null hypothesis H0 of equalmedians at 5% signif-
icance level is rejected. The white pixels denote that there is no differ-
ence between both groups (p ≥ 0.05), and pink ones denotes the
impossibility to compute tp. On the contrary, the black pixels represent
the minimum p-value among all the possibilities on the phase plane.

According to Figs. 3 and 4, the significant values for each network
measure occur only for some coupling structures and thresholds ε.
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Fig. 3. (Color online) Phase plane structure of the coupling vs. ε showing the significance
between the control and the PE groups and using the RP measures obtained by RQA. (a
p-values. Note that some special pixels are used such as white (p ≥ 0.05; H0 cannot be reject
and black (minimum p-value).
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Figs. 5 and 6 show the same plane as in Figs. 3 and 4 but considering
the cases in which all the four RQA and network measures are simul-
taneously significant, i.e., p b 0.05 (black pixels). Fig. 5 shows the
cases in which the set of RQA measures are (RR,DET,VMAX,TT)
(a)–(b) and (RR,LMAX,LAM,VMAX) (c)–(d), and Fig. 6 shows that the
set of four network measures is C;L; C≀;DTð Þ. This case selection is
an indirect multiple test correction: it may happen by chance with a
probability of only 0.054 = 0.00000625. The selected feature combi-
nations are not necessarily the best classification sets, and the finding
of better classification algorithms will be a task for further studies.

Inspection of Figs. 5(a and c) and 6(b) shows that there are only
three occurrences in which the four RQA measures and 22 instances
DET

0.034

0.05

LAM

0.0252

0.05

−2σ]

TT

1 10 20 30 40 50 60 70 80 90 99
0.0207

0.05

(b)

(d)

(f)

level p, computed by means of a Mann–Whitney U-test for establishing differences
) RR, (b) DET, (c) LMAX, (d) LAM, (e) VMAX, and (f) TT. The color code indicates the
ed), pink (it is not possible to compute the p-value; thus, the p-value is undetermined),

women and preeclamptic patients from cardiovascular data using
://dx.doi.org/10.1016/j.autneu.2013.05.003
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in which the four network measures of each set satisfy simultaneously
the statistical significance test, and we further restrict the analysis to
these selected cases that do not necessarily correspond to the lower
p-values. Now, considering these four measures as the parameters for
the classification of control and PE groups, we perform a quadratic dis-
criminant analysis for all the possible structures of the coupling and ε
(Figs. 5(b and d) and 6(b)).
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Fig. 5. (Color online) Samephase plane as in Figs. 3, showing the significant occurrences for the
ly the condition p b 0.05 (black pixels). (b)Misclassification errors (color code) in the classifica
sures. Panels (c) and (d) the same as panels (a) and (b) but for the set (RR,LMAX,LAM,VMAX).
performed, and it is related to the fact that for these cases, at least one of the network measure
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Table. 1 shows the statistical measures of the classification perfor-
mance for the best selected feature sets of Figs. 5 and 6. Such measures
are misclassification error rate (mer), which is the percentage of obser-
vations that aremisclassified; sensitivity (se), which is the proportion of
true positives that are correctly identified by the test; specificity (sp),
which is the proportion of true negatives correctly identified by the
test; positive predictive value (xtitPPV), which is the proportion of
(b)
23.6%

49.4%

(d)−2σ]

1 10 20 30 40 50 60 70 80 90 99
22.9%

52.1%

set (RR,DET,VMAX,TT) inwhich (a) the four consideredRQAmeasures satisfy simultaneous-
tion of control and PE groups after a quadratic discriminant analysis for the four RQAmea-
In panels (b) and (d), the white pixels indicate that the discriminant analysis cannot be
s has an undetermined p-value. The black pixel indicates the minimum value of the error.

women and preeclamptic patients from cardiovascular data using
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patients with positive test results who are correctly diagnosed; and
negative predictive value (NPV), which is the proportion of patients
with negative test results who are correctly diagnosed.

From Table 1, we select the best situations in which the condition
p b 0.05 is accomplished simultaneously by all the elements of the
RQA and network sets. The best performance for the RQA analysis cor-
responds to the set (RR,LMAX,LAM,VMAX), a coupling structure 102 and
ε = 0.20σ, whose misclassification error is 31.2%, giving consequently
the best values for the classification results, i.e., a sensitivity of 91.7%,
a specificity of 45.8%, a PPV of 36.1%, and an NPV of 94.3%; whereas
for the ε-recurrence networks, we have a coupling structure 120 and
ε = 0.61σ, whose misclassification error is 20.1% and consequently a
sensitivity of 91.7%, a specificity of 68.1%, a PPV of 48.9%, and an NPV
of 96.1%.

Finally, other tools could be combined with the method used in this
work such asmotif distributions (Xu et al., 2008). As a glance of the latter,
in Fig. 7 is shown the percentage of occurrence of subgraph size-4 motifs
(computed using FANMOD, a software developed by Wernicke and
Rasche, 2006) in the networks of both groups, PE and control, constructed
using the medians. There is no significant difference among the percent-
age appearing in the networks of both groups.

4. Discussion

This work is based on recurrence methods: RQA and ε-recurrence
networks, the latter is remarkable due to its novelty. The analysis of
biosignals in their raw form does not give enough information to per-
form a suitable classification. On the contrary, when using RQA and
ε-recurrence networks, the classification is possible with interesting
results that allow us to validate a feasibility of these models. At a first
sight, it seems that the ε-recurrence network is a tool more powerful
than RQA for the classification. The latter could be related to the fact
that the method based on ε-recurrence networks allows to distinguish
Table 1
Statistical measures of the performance of a binary classification test considering the best p
neously the condition p b 0.05 (last column).

Set Coupling ε [× σ] mes [%]

(RR,DET,VMAX,TT) 010 0.40 35.4
012 0.52 23.6

(RR,LMAX,LAM,VMAX) 102 0.20 31.2
210 0.17 22.9

C;L; C≀;DTð Þ 120 0.61 20.1
120 0.60 18.1

Please cite this article as: Ramírez Ávila, G.M., et al., Classifying healthy
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between different dynamical regimes and also to detect corresponding
dynamical transitions. In other words, the dynamical CV aspects should
be better described by ε-recurrence networks. Nevertheless, further
studies combining RQA, ε-recurrence networks, and detection of motifs
could be important both to improve the classification results and for a
better understanding of the underlying physiological phenomena
involved in the CV indicators. Moreover, the combination with other
methods such as those considered in Porta et al. (2009) could be also
useful for achieving better classification.

The obtained results allow us to compare both recurrence methods
and to realize that there are some important features that should be
considered when combining both methods for classification analysis.
Concerning the ε-values, the optimal values for RQA are less than
those corresponding to recurrence network. In a first approach, consid-
ering the combined set TT; C;L; C≀;DTð Þ, we obtain the following statis-
tical measures of the performance of a binary classification test when
ε = 0.60σ and the coupling 110: mes = 16.0 %, se = 91.7 %, sp =
76.4 %, PPV = 56.4 %, and NPV = 96.5 %. The problem with the latter
results is that not all the measures of the set are significant (p b 0.05).
Nevertheless, it is possible that by means of a simple relationship
between the ε-values for RQA and the complex networks, we can
improve the classification results.

The coupling among the CV indicators is an important point to study.
The applied methods could give additional insights to understand the
variability of the coupling between the CV indicators. In spite of the
minimalist assumptions concerning the structure of the coupling, and
just one value of ε in order to avoid the ambiguities stated in Donner
et al. (2010a), our results give useful information for the classification
and are similar to those obtained in Malberg et al. (2007).

The quantificationmadewith the networkmeasures is an indication
of the differences between control individuals and preeclamptic
patients, but of course, it is hard to estimate visually the differences
in the networks structure. For that, it is mandatory to perform the
ossible situations in which the four RQA and network measures satisfy or not simulta-

se [%] sp [%] PPV [%] NPV [%] p b 0.05

83.3 45.8 33.9 89.2 Yes
95.8 56.9 42.6 97.6 No
91.7 45.8 36.1 94.3 Yes
83.3 70.8 48.8 92.7 No
91.7 68.1 48.9 96.1 Yes
91.7 72.2 52.4 96.2 No

women and preeclamptic patients from cardiovascular data using
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Fig. 7. (Color online) Subgraph size-4 motif distribution for both groups when using
the medians to construct a network for each group.
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recurrence network analysis finding the network measures which will
be used later for the classification.

The advantages of the recurrence methods shown in this work lie
in their easy applicability to the analysis of biosignals and offer new
possibilities both in the understanding of PE pathogenesis and to
envisage new therapeutic strategies.
Fig. 8. (Color online) Detailed description of the ε-recurrence network method onto the embe
points of the time series are intersecting their ε-spheres; thus, a link is associated to both poin
in the sameway as inpanel (a), the network structure is obtained (links represented by thicker a

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Fig. 9. (Color online) Representation of the adjacency matrix elements from which it is pos
motif shown besides the image.

Please cite this article as: Ramírez Ávila, G.M., et al., Classifying healthy
recurrence and complex network methods, Auton. Neurosci. (2013), http
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Appendix A. Obtaining networks from time series

With the aim of illustrating the process in which the networks are
obtained from the time series, we use a simple example using a normal-
ized time series from a control individual using the coupling structure
(H(t + 1),D(t + 2),S(t)) and the threshold value ε = 0.61σ that lead
to the best discrimination (see Table 1). From Eq. (1), we determine
whether or not a link relies two specific points. For simplicity, we
show in Fig. 8 the case in which only the first three points of the time
series are considered. A sphere of diameter ε is associated to each
point and according to Eq. (1), the value of Ai,j = 1 (existence of
a link), only if the distance between the points i and j is less than ε,
i.e., if their ε-spheres intersect. Fig. 8(a) shows that only points 1 and
2 satisfy the above-mentioned condition; thus, a link (thicker and less
dark line) is established between them. On the contrary, point 3 does
dding phase space (H(t + 1),D(t + 2),S(t)) using the ε-sphere. (a) The first and second
ts in the network structure. (b) The representation of the first 15 points, and proceeding
nd less dark lines). (c) Time series. (d) Complexnetwork represented into thephase space.

9 10 11 12 13 14 15

9 10

1112

sible to extract the motifs. For instance, the elements 9, 10, 11, and 12 give rise to the

women and preeclamptic patients from cardiovascular data using
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not have any link with the other points, and only the time series
sequence (1 → 2 → 3) is represented by the thinner and darker line.
In Fig. 8(b), we extend the procedure for the first 15 points of the time
series and then we extract the time series sequence 1 → 2 … → 15
and the network in Figs. 8(c) and 8(d), respectively. The representation
of the adjacency matrix is possible using an image where the black and
white pixels correspond to the values 1 and 0, respectively. The value Ai,
j = 1 indicates the existence of a link between the nodes i and tj. Fig. 9
shows the adjacency matrix corresponding to the first 15 elements of
the above-mentioned time series. As a glance of how a 4-element
motif is obtained, the elements and the corresponding motif are circled
in the figure. Given the consideration of only 15 elements of the time
series, there are 63 subgraphs (4-element motifs).
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