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Abstract – We study a bifurcation cascade whose proper unfolding requires tuning more than one
parameter simultaneously. Specifically, we investigate metric properties of extended self-similar
triangular areas observed recently in the control parameter space of flows (lasers and electronic
circuits), and maps. Such areas are delimited by shrimplike stability islands, seem to arise in
unbounded quantities, and to accumulate in narrow intervals of control parameters. Numerically,
we find their asymptotic rate of accumulation to be unity. The asymptotic properties of triangle
vertices and their centroids are also investigated.

Introduction. – Recently, a profusion of zig-zag net-1

works interconnecting certain classes of periodic oscilla-2

tions were discovered in the control parameter space of a3

fiber-ring laser, in an electronic circuit containing a tunnel4

diode [1, 2], and in the Hénon map, a proxy for a widely5

used class of CO2 lasers [3,4]. Zig-zag networks consist of6

regular chains interconnecting sequences of intricate and7

self-similar stability phases known as shrimps [5]- [10],8

formed by pairs of cascades of either period or peak dou-9

bling bifurcations followed by chaotic oscillations. Such10

networks are not difficult to find in both continuous-time11

and discrete-time dynamical systems.12

One of the distinctive characteristics of zig-zag networks13

is that they sometimes display infinite accumulation of14

shrimp triplets which form triangles, as illustrated below.15

Thus, they offer a natural scenario to investigate met-16

ric properties of the accumulation of bifurcation cascade17

whose proper unfolding requires tuning simultaneously18

more than one parameter. In particular, zig-zag networks19

allow the investigation of scaling properties of extended20

areas discovered recently in the control parameter space21

of prototypical systems, namely in the self-pulsations of22

a CO2 laser with feedback [10, 11], in a damped-driven23

Duffing oscillator [12], and in the characterization of the24

transport properties of ratchets [13–15]. Accordingly, the25

present work grew out of a desire to study scaling prop-26

erties of stability islands whose generic shape and posi- 27

tion in control parameter space depend on tuning more 28

than one control parameter simultaneously, Multiparame- 29

ter scalings do not seem to have been explored yet. 30

As it is known, the investigation of metric properties 31

of bifurcation cascades was the subject of several studies 32

probing universality classes in dynamical systems. Such 33

studies were motivated originally by remarkable findings 34

reported independently by Feigenbaum [16] and by Coul- 35

let and Tresser [17, 18]. For more recent results see, 36

e.g. Refs. [19, 20]. Despite the initial claims of universal- 37

ity of the scaling constants, it was concomitantly reported 38

by several groups that the scaling constants, in fact, vary 39

considerably in systems more complex than the quadratic 40

map, and in higher dimensions [21]- [31]. 41

Concerning metric properties, period-doubling bifurca- 42

tions in low-dimensional systems have been studied exten- 43

sively. However, such investigations were restricted exclu- 44

sively to properties observed when varying a single control 45

parameter. As it is known, the most pronounced effects 46

of bifurcation cascades occur along certain specific direc- 47

tions, tortuous corridors in parameter space, which invari- 48

ably require tuning more than one parameter in order to 49

be able to move along them [5, 10]. Here, we focus on 50

metric properties observed when complex extended struc- 51

tures in parameter space are deformed by the simultane- 52
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Fig. 1: The region of the control parameter space of the Hénon
map which contains a large concentration of shrimplike stabil-
ity structures [5]- [8]. The two colors used to display the inner
structure of stability regions correspond to positive or nega-
tive values for the trace of the Jacobian matrix at every point.
See Section . The arrowhead points the window magnified in
Fig. 2(a). This figure displays 1200× 1200 parameter points.

ous variation of two control parameters. Clearly, the need53

for tuning more than one parameter simultaneously arises54

because the boundaries separating different phases in con-55

trol parameter space are normally complicated curves, not56

straight lines.57

We report an investigation of the scaling properties of58

certain triangular areas delimited by shrimp triplets in59

the control parameter space of the two-dimensional Hénon60

map61

xt+1 = a− x2t + byt, yt+1 = xt. (1)

Here, a, b are real parameters and x, y are real variables62

whose meaning depends on the particular system being63

modeled by the map. Figure 1 shows the distribution of64

stability islands for the map, with periodic phases repre-65

sented in colors, following Ref. [5,10]. The triangular areas66

discussed here were also observed in other maps used, e.g.,67

to model discrete ratchets, where zig-zag sequences are as-68

sociated with the characterization of the ratchet current69

[13–15].70

At present there does not exist a satisfactory and practi-71

cal theory to study the accumulation of extended stability72

islands, that is, an analytical approach to estimate con-73

vergence of self-similar extended structures and to delimit74

boundaries of stability phases in higher-dimensional dy-75

namical systems. Accordingly, such investigations must76

be performed numerically. For practical applications, the77

identification of complex structures and their accumula-78

tion mechanisms in maps can be made with a moderate 79

investment of computer time. A significant advantage of 80

studying metric properties of maps is the possibility to by- 81

pass all the usual uncertainties associated with numerical 82

algorithms used for the integration of sets of differential 83

equations. 84

Shrimp doublets and triplets. – Figure 1 shows a 85

broad view of the control parameter space of the Hénon 86

map, the region where one finds most of the shrimplike 87

islands of stability [5]- [8]. Numbers indicate the main 88

period k of some of the k × 2n islands. 89

Rather than using eigenvalues [32], in Fig. 1 we follow 90

Sannami [33] in plotting the trace τk of the Jacobian ma- 91

trix for k-periodic points. The reason for using the trace 92

is that eigenvalues are not always real numbers and have 93

manifolds that may display odd behaviors [34]. There- 94

fore, eigenvalues do not seem reliable to inspect the inner 95

structure of shrimps. Instead of using a single solid color 96

to paint the whole k-periodic phase, we partitioned phases 97

into two colored sectors as follows. For a given period k, 98

we represented the region characterized by τk > 0 using 99

a color associated with the period, using black to repre- 100

sent the region where τk < 0. This dichotomic division 101

of the stability windows, the same one used in all figures 102

below, increases the information content of stability dia- 103

grams, allowing one to easily recognize shrimps sharing 104

similar periodicities and, simultaneously, revealing their 105

inner structure, analogously to plots of “multipliers” for 106

one-dimensional maps [35]. 107

In Fig. 1, the white region represents parameters leading 108

to aperiodic (i.e., chaotic) orbits. Starting from the left 109

side, Fig. 1 shows two pairs of stripes containing periods 110

2 and 4, as indicated. They belong to the familiar 1× 2n 111

bifurcation cascade. After the rightmost period 4 region, 112

it is possible to recognize a similar pair of parabolic stripes 113

corresponding to period 8, also characterized by negative 114

and positive values of τ . In the upper part of the period-8 115

cascade, there is a black box containing a large portion of 116

an additional complicated period-8 structure, which ex- 117

tends well into the vast parameter region characterized by 118

divergence, as indicated. This additional period-8 island 119

contains a cusp located somewhat near structures of peri- 120

ods 10 and 6. Incidentally, around these islands one finds 121

a startling phenomenon: stable periodic orbits character- 122

ized by complex values of (x, y) but for real parameters 123

(a, b) [36]. 124

Figure 1 also contains two boxes with shrimp doublets 125

and triplets. As mentioned, the large and easily visible 126

box contains part of the period 8 structure. A second and 127

much smaller box, indicated by an arrowhead, is located 128

between shrimps of periods 7 and 9. It is shown magnified 129

in Fig. 2(a). At the center of this figure there is a wide 130

period-18 stability island mentioned by Lorenz [7]. As it 131

is clear from the figure, the trace τ reveals a relatively 132

complicated inner topography of central portion of this 133

island. On a finer scale, around the period 18 island there 134

p-2



Two-parameter areal scaling in the Hénon map
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Fig. 2: Sequences of shrimp doublets and triplets. Numbers indicate the period of the main stability region. The white
background represents parameters leading to chaotic oscillations. The pink background is the basin of the attractor at −∞.
(a) The complex period-18 structure studied by Lorenz [7], surrounded by shrimp doublets and triplets. Boxes are magnified
in the next three panels. (b) A sequence of shrimp doublets. (c) An apparently isolated pair of period-25 shrimps which,
however, forms (d) A shrimp triplet. (e) A period-23 triplet between a pair of period-29 triplets. (f) A region with a profusion
of triplets and more intricate stability islands. The two boxes are magnified in Fig. 6. Individual panels display the analysis of
1200× 1200 = 1.44× 106 parameter points.

is a profusion of shrimp doublets, some of which are shown135

in Fig. 2(b). Sometimes, such doublets are in fact triplets,136

which may also arise as combinations of unsuspected and137

apparently uncorrelated structures, as shown in Fig. 2(c)138

and Fig. 2(d).139

As hinted by the periodicities of individual doublets in140

Fig. 2(b), they do not seem to be connected in any no-141

ticeable way. Uncorrelated doublets exist also in several142

other locations in the control parameter plane. Analo-143

gously, there is a large number of triplets, like in Fig. 2(d),144

which do not seem to be connected to other stability is-145

lands. Attempts to detect shrimp connections met diffi-146

culties because their legs get thinner and thinner as one147

moves away from their central stability region. Similarly148

to Fig. 2(d), Figure 2(e) illustrates a period-23 triplet for-149

mation in the same parameter region where there are two150

period-29 triplets. Such mixed formations are also found151

in other windows in the b > 0 half of the control plane.152

Figure 2(f) shows a sort of “border line” triplet strad-153

dling the chaotic and the divergent backgrounds, namely154

a triplet having two shrimps located over a background of155

chaos linked to a shrimp located over the background of156

divergence. Near this triplet, one finds a plethora of addi-157

tional triplets as well as more complicated arrangements,158

illustrated by the pair of boxes in Fig. 2(f), shown magni-159

fied below in Fig. 6. In contrast to the isolated doublets160

and triplets in Fig. 2, it is also possible to find unbounded161

cascades of self-similar triplets forming arithmetic progres-162

sions, namely whose periodicity increases by a constant163

value from triplet to triplet, as illustrated in Fig. 5 and 164

discussed in the next Section. 165

Triplets in arithmetic progression. – Figure 3 166

shows a sequence of successively magnified windows in- 167

dicating the location of an interesting arithmetic progres- 168

sion of shrimp triplets that we wish to consider in more 169

detail. The pair of boxes Fig. 3(a) contains several triplets 170

analogous to the ones observed in systems governed by 171

differential equations, namely in fiber-ring lasers, and in 172

an electronic circuit with a tunnel diode [1,2]. Figure 3(b) 173

shows uncorrelated triplets similar to the ones in Fig. 2(d), 174

while the red boxes in Figs. 3(c) and 3(d) mark the loca- 175

tion of triplets in an apparently never-ending arithmetic 176

progression. Similar unbounded progressions exist in other 177

parameter windows, particularly for orbits of higher peri- 178

ods. Such apparently unbounded progressions of stability 179

islands display accumulation boundaries, horizons, embed- 180

ded in the broad parameter background associated with 181

chaotic oscillations. 182

The study of metric properties of the two-dimensional 183

Hénon map and higher dimensional maps is more compli- 184

cated than the corresponding study for one-dimensional 185

systems. For one-dimensional maps xi+1 = f(xi), 186

the study of metric properties is greatly facilitated by 187

the presence of critical points, namely points where 188

df(x)/dx|x=xi = 0. Orbits containing such points are the 189

so-called superstable orbits. For such orbits, the multi- 190

plier mk ≡ dfk/dx associated with a k-periodic orbit is 191
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Fig. 3: Successive magnifications illustrating a profusion of zig-zag triplets. (a) Magnification of the uppermost box in Fig. 1. (b)
Enlargement of the red box in (a). (c) Enlargement of the black box in (a). (d) Apparently unbounded arithmetic progression
of zig-zag triplets is located in the box, shown magnified in Fig. 5. Similar sequences exist in other regions of the control
parameter space. Grid resolution: 1200× 1200 parameter points.

zero [37–39] (fk denotes the k-th composition of f with192

itself) [35]. Critical points are the basic objects used by193

Fatou and Julia to study the properties of iterated rational194

functions. For a very complete survey of the classical liter-195

ature see Cremer [39]. For more recent literature consult196

Ref. [40]. Unfortunately, for high-dimensional maps there197

are no proper definitions for critical points, multipliers,198

and superstable orbits.199

Figure 4 shows enlarged views of the three shrimps form-200

ing the vertices A1B1C1 and A2B2C2 of first two triplets201

in arithmetic progression. From Fig. 4 one clearly sees202

that the trace of the Jacobian matrix is not equivalent203

to the multiplier. For, although the trace is capable of204

exposing two parabolic arcs which resemble the parabolas205

generated by multipliers for one-dimensional maps, for the206

Hénon map the parabolic arcs are “broken”, i.e., they do207

not always intersect, as in panels A1, B1, A2, B2, C2. Fur-208

thermore, when they do intersect, the intersection occurs209

is not at just a single point but, instead, in an extended re-210

gion, as seen in panel C1. These two problems are generic211

difficulties present in all higher dimensional systems. To212

bypass trace peculiarities and to be able to define unam-213

biguously all shrimp heads [35], here we interpolated bro- 214

ken parabolic arcs and used their points of intersection to 215

define triangle vertices. 216

Areal scaling. – Figure 5 shows the location and 217

the strong compression undergone by the first 11 trian- 218

gle triplets which accumulate in arithmetic progression 219

towards the period-18 boundary as they successively get 220

more and more squeezed. Red dots mark the centroid 221

of the triangles, namely the intersection of the three tri- 222

angle medians. The coordinates of the triangle vertices 223

are recorded, their area, and their centroid coordinates 224

are collected in Table 1. These numerical values were ob- 225

tained by measuring them from individual blowups (not 226

given here) for every triangle. Noteworthy is the fact that 227

the period difference between two consecutive triangles is 228

18, the same period boundary horizon towards which they 229

accumulate. As mentioned above, this situation is analo- 230

gous to the one previously observed in a damped-driven 231

Duffing oscillator [12] and in the self-pulsations of a CO2 232

laser with feedback [10,11]. 233

As seen from Fig 5, vertices tend to accumulate fast, 234

in a narrow parameter interval. This tendency may also 235
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Table 1: Period ki, coordinates, areas and centroids of the triangles in arithmetic progression, shown in Fig. 5. The values in
the bottom line are extrapolated values. See text.

i ki aAi bAi aBi bBi aCi bCi Area × 108 acentroid bcentroid

1 44 1.12878432 0.42556190 1.12924456 0.42542796 1.12917220 0.42570713 5.93966512 1.12906703 0.42556566
2 62 1.12942445 0.42515476 1.12958722 0.42513889 1.12966421 0.42525273 0.98757841 1.12955863 0.42518213
3 80 1.12957064 0.42504772 1.12967360 0.42505563 1.12976177 0.42513312 0.36404728 1.12966867 0.42507882
4 98 1.12962318 0.42500862 1.12970509 0.42502402 1.12979458 0.42508885 0.19660397 1.12970762 0.42504050
5 116 1.12964741 0.42499058 1.12971932 0.42500938 1.12980916 0.42506822 0.12710962 1.12972530 0.42502273
6 134 1.12966058 0.42498084 1.12972700 0.42500162 1.12981689 0.42505705 0.09068732 1.12973482 0.42501317
7 152 1.12966845 0.42497497 1.12973143 0.42499706 1.12982147 0.42505030 0.06820358 1.12974045 0.42500744
8 170 1.12967360 0.42497116 1.12973422 0.42499418 1.12982446 0.42504592 0.05295770 1.12974409 0.42500375
9 188 1.12967713 0.42496855 1.12973609 0.42499224 1.12982644 0.42504289 0.04229662 1.12974655 0.42500123
10 206 1.12967971 0.42496670 1.12973741 0.42499088 1.12982789 0.42504073 0.03442693 1.12974834 0.42499944
11 224 1.12968156 0.42496529 1.12973837 0.42498989 1.12982896 0.42503912 0.02841212 1.12974963 0.42499810
...

...
...

...
...

...
...

...
...

...
...

55 1016 1.12968365 0.42496342 1.12973944 0.42498857 1.12982988 0.42503696 0.02129941 1.12975092 0.42499632
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Fig. 4: Details of the arithmetic progression of triplets accu-
mulating towards the period-18 domain. Left column: triplet
A1, B1, C1, each of main periodicity 44. Right column: triplet
A2, B2, C2 of main periodicity 62. An apparently unbounded
quantity of additional triplets exist. Note that the parabolic
arcs defining shrimp “heads” [35] may meet or not (see text).
Individual panels displays 1200× 1200 = 1.44× 106 parameter
points.

be seen in Table 1. Accordingly, an interesting issue is to236

determine their accumulation points and rate of conver-237
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Fig. 5: The first 11 triangles of an apparently infinite arith-
metic progression accumulating towards a period-18 boundary.
The difference of the periods between two consecutive triangles
is also 18. Grid resolution: 3000× 3000 parameter points.

gence. To find them, we proceed as follows: (i) Firstly, 238

we compute the successive differences between the coor- 239

dinates (a, b) for vertices and centroids of each triangular 240

region; (ii) From these differences, a fitting equation for 241

each sequence is derived; (iii) Using these fitting equations 242

we estimate the coordinates for extrapolated triangles; (iv) 243

The extrapolation process is extended until quantities re- 244

main constant to eight decimal digits. The convergence 245

rate of the triangles towards the asymptotic horizon is 246

found to be unity. The resulting extrapolated values are 247

listed in the last line of both tables above. For i = 55, 248

the listed values for the area and centroid were obtained 249

from the extrapolation, not from the vertices coordinates 250

in the table, although both sets of values essentially coin- 251

cide. Remarkably, triangles seem to accumulate just be- 252

fore reaching the period-18 horizon leg in front of them. 253

Perhaps extrapolations using more than 11 triangles could 254

reveal the extrapolated values come closer or even coincide 255

asymptotically with the convergence horizon. However, it 256

becomes increasingly more difficult to reliably detect tri- 257

angles when the period further increases. The precise lo- 258

cation of the convergence horizon is therefore left as an 259

open question for further investigation. 260
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Fig. 6: Magnifications of the pair of boxes seen in Fig. 2(f) showing some exquisite and much more complicated triplets.

As a last result, in Fig. 6 we collect a number of triangu-261

lar stability islands which “break the symmetry,” namely262

that do not fit unambiguously in the above scenarios but,263

instead, display more exquisite shapes and organizations.264

For instance, the box in Fig. 6(a), magnified in Fig. 6(c),265

displays a pair of shrimps that under low resolution may266

appear as uncorrelated but that are in fact interconnected,267

forming a triplet. Figure 6(d) shows that a period-22268

triplet is partially overlapping the leftmost partner of a269

larger period-16 triplet. In reality, the period-22 triplet270

is interconnected with a fourth shrimp locate farther to271

the right, as indicated. Therefore, it is possible to cir-272

culate continuously from one shrimp to the others with-273

out ever having to cross the vast sea of chaos surrounding274

them. Several additional triplets exist in these regions,275

but are too small to be identified under low resolution.276

Analogously, Fig. 6(b) contains several triplets that may277

be easily seen under higher resolution. Of particular in-278

terest in this panel is the region inside the box, magnified279

in Fig. 6(e). First, the leftmost and smaller box shows a280

sort of symmetric triplet which also exists in other regions281

of the parameter space. However, the most curious triplet282

is located inside the rightmost box, magnified in Fig. 6(f).283

In this box, one finds a period-24 triplet that is intercon-284

nected with a very complex structure of the same period.285

Such highly complex structures exist abundantly and are286

frequently found to be interconnected with less compli-287

cated structures sharing the same period. As is known, at288

present there is no theoretical framework to explain the289

origin of any of such structures, highly complex or not.290

Conclusions and outlook. – We studied metric291

properties of certain triangular stability islands covering292

extended areas in control parameter space and which are293

abundantly present in flows and maps. Such triangular294

islands appear both isolated form or forming apparently 295

unbounded arithmetic progressions. In contrast with the 296

familiar scalings in the literature, the unfolding of areal 297

scaling requires tuning more than one control parameter 298

simultaneously. A significant feature of the arithmetic pro- 299

gression is that it displays specific accumulation points, 300

both for triangle vertices and their centroid coordinates. 301

Although the emphasis here was on a specific period-18 302

accumulation, we find accumulations to be a rather com- 303

mon phenomenon, involving analogous arithmetic progres- 304

sions and many other periods. The accumulation unfolds 305

systematically and is fast. Accordingly, the convergence 306

to an almost constant value of the area was observed. 307

Furthermore, we find the arithmetic progression to con- 308

verge to a well-defined asymptotic horizon whose period 309

coincides with the constant rate of period increase of the 310

arithmetic progression. It is not yet clear if the arith- 311

metic progressions involve a finite or an infinite number of 312

terms. A particularly promising system for investigating 313

two-parameter scalings is the analytical path discussed in 314

Fig. 2 of Ref. [41], for the so-called canonical quartic map. 315

In conclusion, the metric properties of extended progres- 316

sions of stability structures whose accumulation in con- 317

trol parameter space depends on more than one parame- 318

ter were studied in detail and characterized numerically. 319

We are not aware of any previous study of the scaling of 320

properties depending on the variation of more than one pa- 321

rameter simultaneously. Our results are also relevant for 322

flows, systems governed by differential equations. It would 323

be interesting to compare the present findings with anal- 324

ogous ones for ratchets and the aforementioned flows rep- 325

resenting semiconductor laser diodes, electronic circuits, 326

and other promising systems. 327
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[38] Böttcher L.E., Izv. Kazan Fiz.-Mat. Obshch. 14 (1904) 407

155-234. 408

[39] Cremer H., Jahresber. Deutsche Math. Ver. 33 (1925) 409

185-210. 410

[40] Alexander D.S., Iavernaro F. and Rosa A., Early 411

days in complex dynamics: a history of complex dynamics 412

in one variable during 1906-1942 (American Mathematical 413

Society, Providence, 2012). 414

[41] Gallas J.A.C., Physica Scripta 94 (2019) 014003, Fest- 415

schrift Wolfgang Schleich. 416

p-7


	Introduction. –
	Shrimp doublets and triplets. –
	Triplets in arithmetic progression. –
	Areal scaling. –
	Conclusions and outlook. –
	

