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TRANSIENTS AND ARNOLD TONGUES FOR SYNCHRONIZED ELECTRONIC FIREFLIES
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Abstract: Fireflies constitute a paradigm of pulse-coupled
oscillators. This pulse coupling form is extensively common
in Biology —the chirp of crickets, pacemaker cells firing and
luminescent algae Gonyaulax, among many—. The study of
how pulse-coupled oscillators achieve synchrony is impor-
tant due to experimental observations of synchronous neu-
ral firing patterns of various mammalians, insects and rep-
tilian species. In order to tackle the problems related to
synchrony of pulse-coupled oscillators, a Light-Controlled
Oscillator (LCO) model is presented. LCOs constitute uni-
dimensional relaxation oscillators described by two distinct
timescales meant to mimic Pteroptyx malaccae fireflies in a
simple fashion, with great parameter malleability and easy
experimental implementation. Dynamical results dealt range
from transient behaviours for different coupling configura-
tions and intensities, to stable states of arbitrary order. Fur-
thermore, analytical expressions regarding situation are also
exhibited. Construction of return maps reveal stability issues,
bifurcations of fixed points as control parameters are tunned
and as the number of oscillators involved is increased. Nu-
merical simulations complement all studies.
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1. INTRODUCTION

Synchronization consists in an adjustment of rhythms
among self-sustained systems due to a weak coupling [1, 2]
that may act in different manners. This phenomena mani-
fests in systems of very different nature. In particular, pulse-
coupled oscillators and integrate-and-fire models have long
attracted the attention of several scientists, though, signif-
icant progress in its analysis has not been made when the
oscillators are not identical. As a consequence, mainly nu-
merical results have been reported. Nevertheless, Strogatz
and Mirollo [3] proved that for certain conditions, these type
of coupled oscillators always synchronize.

Experimental works that deal with synchronization prob-
lems are usually based in complex models in which transient
times cannot be easily interpreted. Transients are usually elu-
cidated for simpler models; configurations of phase-locked

loops [4] and Light-Controlled Oscillators (LCOs) [3, 5, 6]
constitute examples of them.

As a complement to dynamical considerations, we present
an analysis due to self-similarity of synchronization times as
a function of initial conditions curves for two coupled LCOs.
These analysis shows scaling laws that result in the deter-
mination of critical exponents and universal behaviours that
make the transient times dependent only on initial conditions
and the adjacency matrix form, despite coupling intensity.
Furthermore, the studies related to Master-Slave (MS) and
Mutual-Interaction (MI) configurations reveal the known ex-
istence of a single attracting limit cycle as well as a repelor
that corresponds to a single unstable initial state. The ability
to calculate Floquet exponents for this cycles are based in a
simple transformation of coordinates.

On the other hand, synchronous regimes of arbitrary or-
der are observed, and the whole family of synchronization
regions are plotted for MS and MI configurations in a nu-
merical and experimental fashion. A return map is generated
by the construction of a Poincaré section that allows to ob-
tain some analytical results for the MS configuration. Re-
sults in this matter exhibit fixed points and stable states for
arbitrary (1 : n) states with remarkable consequences on the
tongues stability and form. Further analysis of stable regions
is carried for different configurations of three LCOs, where
experimental and numerical results exhibit that depending on
the adjacency matrix, phase bifurcations appear as a conse-
quence of frequency detuning.

2. LIGHT-CONTROLLED OSCILLATORS

LCOs are piecewise-linear one-dimensional oscillators,
set to oscillate in a spiking form. The electronics consists
on a dual RC circuit that shares the capacitor and an LM555
chip. This last element chooses the corresponding stage by
stablishing well defined thresholds. Being Vcc the voltage
source, the threshold for the charging (discharging) stage is
2Vcc/3 (Vcc/3). Coupling is achieved by IR diodes and pho-
tosensors. Coupling strengths are set by placing LCOs at
different distances.

The dynamical model that describes LCOs corresponds to



the following set of differential equations [5, 6]:

V̇i(t) = λi [Vcc − Vi(t)] εi(t)− γiVi(t) [1− εi(t)]

+β
N∑

j= 1, j 6=i

δij [1− εj(t)], i = 1, . . . , N, (1)

where Vi is the i-th LCO voltage, β gives account of the cou-
pling strength, δij is the adjacency matrix element, and εi(t)
is a variable created to represent the oscillator stage —takes
the value 1 (charging stage) or 0 (discharging stage)—. The
parameter λi (γi) is the inverse characteristic time scale for
the charging (discharging) stage and is related to those of
the LCO. The action of the coupling results in a raise of the
asymptotic level of the capacitor stages (Vcc and 0 increase
for charge and discharge, respectively).

In the case of an isolated LCO the dynamic is naturally
represented in the circle S1. This state space has an injective
and a dissipative part of similar length. Through the injec-
tive part, the LCO charges during a time Tλ, while being in
the dissipative part a fast discharge occurs lasting Tγ . Every
time any LCO achieves a threshold a new initial condition
for the global system is generated. Nevertheless, the con-
traction of S1 into a line segment proves to be fruitful when
representingN LCOs, as the state space then transforms into
an N -dimensional cube given by [Vcc/3, 2Vcc/3]N where
Vcc = 9 V . Represented in a N -dimensional torus, this
manifold has 2N sections that represent different flux be-
haviours and timescale ratios, according to the 2N stage pos-
sibilities. In the N -dimensional cube, this sections merge
into an abrupt flux change of direction and magnitude every
time a threshold is achieved, like a ball bouncing in a box
with reactive walls.

3. TRANSIENTS AND STABLE STATES

Synchronization times were calculated by means of the
Poincaré section based, for instance, on LCO1 upper thresh-
old. Then, a phase point transformation (PPT) is constructed:

φi(t) = 2π (t− tk) / (tk+1 − tk) , ∀t ∈ [tk, tk+1] , (2)

where φi the i-th oscillator phase (i = 2, . . . , N ), and tk is
the k-th time that LCO1 achieves the upper threshold. Syn-
chronization between LCO1 and LCOi is achieved whenever
φi tends to a constant.

Due to Eq. (1), synchronization times tsynch will depend
on the coupling configuration and on initial conditions. For
two coupled LCOs: tsynch = f (Vinit, β, δij). Experimen-
tal and numerical results show that maintaining the same
configuration self-similar curves appear for this dependence
when β is tuned. Therefore, scaling laws are calculated.

Cubic state spaces exhibit more directly synchronization
properties. In particular, the limit cycle of full synchroniza-
tion corresponds to the cube diagonal, thus 45◦ plane rota-
tions were used in order to generate orthogonal and parallel
variables that allowed Floquet exponent calculations. When-
ever the synchronization manifold has a higher dimension in

this system, it is due to phase-lags. Thus, correlation func-
tions help to withdraw this lags and maintain the transforma-
tion properties for characteristic exponent calculations.

Regarding stable states, there are several locking possi-
bilities according to the frequency ratio of the oscillators.
Whenever this ratio is near a rational number, synchroniza-
tion (m : n) can be achieved.

Time locking possibilities for (1 : n) states for a MS con-
figuration result in analytical constrains for the Master charg-
ing time (TλM

) as a function of Slave characteristic times.
The construction of the return map: Vn+1 = f(Vn), where
Vn is the Slave LCO voltage at the start of the n-th interac-
tion, shows a piecewise flux of six parts. A stable fixed point
occurs whenever Master LCO begins to act on Slave LCO
charge and finishes on Slave discharge. The unstable fixed
point lies in the part of the map where interactions occur
through discharges and end on the charging state. In order
to achieve synchronization, two pieces of the map with neg-
ative slope detach the flux in two ways and connect these last
situations. Near the edges of these tongues the fixed points
merge in a saddle-node type bifurcation and disappear. Sur-
prisingly, all (1 : n) tongues maintain these characteristics.

When dealing with three LCOs, transients are solved by
calculating the Floquet exponents of the orthogonal 3D cube
diagonal directions. On the other hand, as coupling configu-
rations can take 15 different forms (corresponding to the six
independent entries of the adjacency matrix), stable states
are analyzed taking constant β and detuning LCO periods
for each configuration. Results exhibit phase bifurcations for
some of these configurations when changes in a particular Tλ
is made, detuning the LCOs involved.
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