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Recently, a new kind of optically coupled oscillators that behave as a relaxation
oscillator has been studied experimentally in the case of local coupling. Even though
numerical results exist, there are no references about experimental studies concerning the
synchronization times with local coupling. In this paper, we study both experimentally
and numerically a system of coupled oscillators in different configurations, including local
coupling. Synchronization times are quantified as a function of the initial conditions and
the coupling strength. For each configuration, the number of stable states is determined
varying the different parameters that characterize each oscillator. Experimental results
are compared with numerical simulations.

Keywords: synchronization times; local coupling; networks

1. Introduction

Synchronization is a common feature of oscillatory systems and may be
understood as an adjustment of rhythms of self-sustained oscillators due to
their weak interaction (Schäfer et al. 1999). Synchronization is an ubiquitous
phenomenon and nowadays is a widely spread topic. Several books have been
devoted to this subject both from rigorous (Pikovsky et al. 2001, 2003; Manrubia Q1
et al. 2003) and popularization point of view (Strogatz 2003). Different kinds
of systems show synchronous behaviour varying from biological (Glass 2001;
Kreuz et al. 2007), chemical (Neu 1980; Fukuda et al. 2005) and ecological Q2
systems (Blasius et al. 1999) to electronic devices (Chua 1993; Murali et al. 1995;
Kittel et al. 1998; Cosp et al. 2004; Pisarchik et al. 2008). Among the different
types of models that have been considered to study synchronization, we could
mention coupled maps (Masoller et al. 2003; Masoller & Marti 2005; Morgul Q1
2008), Kuramoto model (Acebron et al. 2005; Chen et al. 2008) and relaxation
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oscillators (Campbell et al. 2004), in particular pulse-coupled oscillators (Mirollo
& Strogatz 1990; Bottani 1995). In this respect, the integrate-and-fire model is
one of the most studied and it has been studied analytically (Timme et al. 2002)
and numerically (Corral et al. 1995). On the other hand, few experimental works
have been reported concerned to this type of oscillators. Light-controlled oscillator
(LCO) is a realistic pulse oscillator whose behaviour resembles to the integrate-
and-fire oscillator but differs by the fact that the discharge is not instantaneous
(Guisset et al. 2002). The experimental results concerning the LCOs have devoted
to local coupling configurations (Ramírez Ávila et al. 2003). Transients or
synchronization times in different sort of systems have attracted the attention of
several scientists, but they do not so far seem to have made significant progress
in its analysis and only numerical results have been reported (Politi et al. 1993;
Acebron & Bonilla, 1998; Fukai & Kanemura, 2000; Bagnoli & Cecconi, 2001;
Zumdieck et al. 2004). Concerning the LCOs’ synchronization times, numerical
results for local and global coupling configurations have been reported (Ramírez
Ávila et al. 2006, 2007). This paper deals with the experimental determination
of the synchronization times in LCOs as a function of the initial conditions and
the coupling topology.

2. Light-coupled oscillator setup

The LCO used in this work is an open electronic version of an oscillator that
mimics gregarious fireflies. Basically, the LCO is composed of an LM555 chip to
function in an astable oscillating mode (Ramírez Ávila et al. 2003). It possesses an
intrinsic period and pulse-like IR light emissions, both of them can be manually
modified on the spot enabling quantitative measurement of phase differences and
period variations with the required precision.

The dual RC circuit (figure 1) was mounted on a 8×5 cm proto-board. The
characteristic frequencies, named λ and γ , corresponding to the charging and
discharging stages of the capacitor C , respectively, are determined when no
external perturbation is done. The timing components are set due to two variable
resistors, Rλ and Rγ , so the intrinsic longer charging period can be changed by
acting on Rλ, and flashing can be widened by modifying the discharging stage,
thus, Rγ . Coupling is achieved by photosensor diodes connected in parallel, which
act as current sources when they are receiving IR light, shortening the charging
time and making a longer discharging stage. When all photosensors are masked,
namely in dark, the periods only depend on the electronics. An LM555 constitutes
the brain of the electronic firefly, managing these current deviations and setting
the maximum charging and minimum discharging voltages to 2/3 and 1/3 of the
source voltage, correspondingly.

In our model, the resistors were changed through the different configurations
used to ensure synchronization when coupling strength was small, though the
values used were usually set to be almost identical between oscillators. Typical
values are:

Rλ = [58.7 − 73.4] ± 0.1 kΩ,

Rγ = [1.00 − 1.30] ± 0.01 kΩ.

Proc. Trans. R. Soc. A (2009)
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Figure 1. Simplified block diagram of the LCO and schematic view of the coupling between LCOs.

These specific values are those used when coupling of two LCOs by mutual
interaction was held. The ratio between these two resistors was always set smaller
than 2.5 per cent in order to keep the pulse-like light emission hypothesis that
mimics its biological analogue. Using a 0.47 μF capacitor, the natural periods
are Tλ = 27.6 ms and Tγ = 0.43 ms. The voltage source being a 9 V battery, the
LM555 sets the lower and upper threshold voltages of the RC circuit to 3 and
6 V, respectively. The coupling strength is changed varying the distance between
the LCOs and can also be changed by placing different resistors in series with
the diodes. The temporal signals in the capacitors were acquired using a NI-
USB 6215 data acquisition device. The characteristic frequency of the LCO was
calculated using standard FFT algorithm. In figure 2, a typical temporal signal
and a spectrum are shown corresponding to the master LCO before coupling.

Master–Slave (MS) and mutual interaction (MI) were used in this work. In
the MS configuration, one LCO is in dark and it is namely the master, LCO1;
the other LCO, namely the slave, LCO2, can be excited through the light-pulsed
emitted by the LCO1. In the MI configuration, both LCOs have the same mutual
influence; they act on each other in the same way with equal strength, so they are
interchangeable. In order to study the influence of the coupling parameter on the
synchronization time, we vary the distance between the IR diode and the photo-
sensor. We have used d1 = 5.0 cm, d2 = 10.0 cm, d3 = 15.0 cm and d4 = 25.0 cm.
In addition, for a fixed distance, we vary the current on the IR diode, which
implies that we can increase the current in a way that the coupling parameter is
duplicated. The experimental setup is shown in figure 3.

Proc. Trans. R. Soc. A (2009)
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Figure 2. Temporal signal (upper) and normal spectrum (bottom) corresponding to the master
LCO before coupling.

LCO 2

LCO 1

coupling

Figure 3. Experimental setup corresponding to a master–slave (MS) configuration and a separation
of d1 = 5.0 cm.

3. Experimentally determined synchronization times

As a system of LCOs can be modelled by a set of ordinary differential equations,
see §4, initial conditions play an important role determining which solutions will
correspond to the oscillator’s evolution. When coupling is taken into account,
particular solutions are modified due to the appearance of a connection matrix,

Proc. Trans. R. Soc. A (2009)
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Figure 4. Perturbation acting upon charging stage in a slave LCO. Gray dotted line corresponds
to master LCO and black line corresponds to slave LCO. The circle indicates the start of the
perturbation.

linking the equations. Solutions are now, not only, initial conditions-dependent,
but they are also a function of how coupling is set, meaning, that it matters what
configuration and coupling strength is implemented. Nevertheless, in all cases,
the frequency at which flashes occur, corresponding to the discharging stage of
the RC circuit, can be considered as a basic feature of an LCO.

(a) Phase locking and frequency entrainment

As perturbations due to other LCOs do not modify the oscillating
amplitudes, the coupling between oscillators imposes a relation between their
characteristic frequencies. By means of an external periodic perturbation,
frequency entrainment is possible and as a consequence, LCOs. The latter occurs
due to the fact that any external (pulse-like in our case) perturbation acting
upon an oscillator will increase the capacitor charge, causing modifications in
its charging or discharging stage, depending where it is held. Thus, if the
perturbation acts during the charging stage, it will increase the LCO frequency,
and if it acts upon the discharging stage, it will decrease its characteristic
frequency. In figure 4 charge–discharge cycle is shown, corresponding to MS
configuration.

The frequency entrainment that happens when LCOs are coupled can be
quantified determining period variations in time. By choosing a reference period
T ∗, we can define a phase difference for each LCO as:

�Φi =
(

1 − Ti(Φ)

T ∗

)
,

Proc. Trans. R. Soc. A (2009)
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Figure 5. (a) Phase difference between oscillators. (b) IR light pulses in each LCOs.

where Ti(φ) represents the new period of the oscillator being perturbed. The
phase difference between LCOs can be defined as:

�Φij = �Φi − �Φj .

When constant phase difference is achieved, oscillators are synchronized.
Taking the maximum charging voltage as our reference for choosing the

LCO period, we could qualify two different behaviours towards synchronization:
positive phase difference and negative phase difference. The first one corresponds
to a shortening of the free-running period Tλ, which only means that perturbation
acts as a positive feedback through the charging stage. A lower phase-locking
limit is achieved when the duration of the perturbation is not sufficient anymore
to reach the switching point of λ towards γ . As a consequence, this case is
a stable situation. In figure 5, we can observe the temporal evolution of the
phase difference and IR light pulses in the MS configuration. At t = 1.61 s,
the phase difference becomes zero, i.e. the LCOs are synchronized and the
IR pulses are emitted at unison. When phase difference is negative, it means
that perturbation acts to widen γ , consequently the period is increased and the
phase-locking should be stable. However, this influence is of little importance
because the discharge current is usually two orders of magnitude greater than
the photocurrent (except figure 4 where the coupling strength was set greater by
electronic changes), and also, perturbation width is of the order of 0.02 λ. As a
consequence, the upper limit is reached as soon as the photocurrent shortens the
next charging stage resulting in an unstable situation.

Figure 6 shows the evolution of the trajectories in phase space for two identical
coupled LCOs, where LCO1 was set as reference.

Proc. Trans. R. Soc. A (2009)
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Figure 6. Evolution of phase space trajectories for two identical coupled LCOs.

(b) Different initial conditions

Now the quantification of synchronization times by means of constant phase
differences is possible; we start dealing with initial conditions. Experimentally, by
leaving the LCO1 on, we managed to control coupling by switching on the other
LCOs afterwards and thus, we found a way of creating different initial conditions
and record their corresponding synchronization times, obtaining behaviours like
those shown in figure 7. Nevertheless, this way of proceeding gives rise to random
initial conditions for both LCOs in every measurement.

The initial condition for LCO2 was recorded as the voltage corresponding to
the first IR lightning from the other. This was done because, where this value
is located will matter directly to the time that LCOs will take to synchronize,
meaning that it determines which phase-locking situation rules the evolution of
the system.

(c) Stable configurations

In addition, with the aim of increasing the coupling strength electronically, we
place a greater photocurrent (this is done by changing the resistors connected in
series with the diodes), we can obtain different connection matrices corresponding
to different types of networks. As mentioned through §2, these matrices are:
the symmetric MI and asymmetric MS configurations. For each configuration,
coupling strength was changed by placing LCOs further apart. Then, coupling
strength was changed electronically, thus, increasing perturbation influence, and
the procedure was repeated. Figures 8 and 9 display typical behaviours for a
coupling strength that corresponds to the one shown in figure 7, where differences

Proc. Trans. R. Soc. A (2009)
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Figure 7. Different initial conditions generated when LCO2 is turned on.

between synchronization curves within these figures are visible on the times LCOs
take to approach synchronization, thus, their slope.

When comparing different distances, figure 10, the curves for each configuration
exhibit similar shapes. Thus, synchronization times depend on the coupling
strength in a way that once the coupling strength is fixed, the system will locate
itself, for different initial conditions, within the corresponding curve.

4. Numerical method

LCOs might be described by a simple model consisting of a set of differential
equations that take into account the charging and discharging stages due to
the RC circuits and the flip-flop LM555; this last element establish well-defined
thresholds for the RC circuit charging at 2VM /3 and at VM /3 for the RC circuit
discharging, where VM is the source voltage value which takes the value 9 V
because in experimental work we use simple batteries as it has been stated in §
2. The equations that describe the coupled LCOs are:

dVi(t)
dt

= λi[(VMi − Vi(t)]εi(t) − γiVi(t)[1 − εi(t)]

+
N∑
i,j

βijδij [1 − εj(t)], i, j = 1, . . . , N , (4.1)

where βij is the coupling strength, δij = 1 if the LCOs interact and δij = 0
otherwise, and εi(t) is the oscillator state that takes the value 1 (charging stage) or

Proc. Trans. R. Soc. A (2009)
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Figure 9. Synchronization times as a function of the initial voltage, corresponding to MI
configuration and different distances. Filled circle, 10 cm; open box, 15 cm; star, 25 cm.

0 (discharging stage); εi(t) changes its value when it achieves the upper threshold
(2VM /3) or the lower threshold (VM /3). We must mention that this model has
been validated experimentally (Ramírez Ávila et al. 2003).

Numerical results for the two configurations used when LCO1 initial condition
is 3 V are shown in figures 11–13. Figures 14 and 15 show the comparison between
experimental and numerical results. Clearly, we can observe a good agreement
with them.
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5. Conclusions

Through our work, we checked that the LCOs designed had a great resemblance
with the behaviour predicted by the model. Furthermore, this design allowed us
to modify on the spot their intrinsic period and pulse-like IR light emissions,
enabling quantitative measurement of phase differences and period variations
with fine precision, and produce electronically different coupling strengths.
Synchronization times for two LCOs interacting in MS and MI configuration
were found experimentally as well as numerically.

The effect of the coupling strength was analysed in detail. Experimentally,
the strength of the coupling was changed forcing greater IR light emissions
by changing resistors in series with the photodiodes and by placing LCO at
different distances from each other. Comparing simulations with experimental
data, we could see behaviours very much alike for synchronization times versus
initial conditions, and by doing so, we have also found a way of quantifying
the experimental coupling strength. Insight and facilities gained through this
experimental work allow us in the future to tackle other aspects of the system,
in particular those related to complex networks coupling, synchronization times
for different networks, and also analyse the multistability patterns that arise for
different initial conditions when more LCOs are interacting.
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