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Our research provides a thorough nonlinear analysis of the acoustics of the tarka, a musi-

cal instrument played during Carnival in the Andean region of Bolivia, Southern Peru and

Northwestern Argentina. While the musical properties of the tarka have been studied for

many years, there is little analysis of its physical properties in particular an explanation

for the instruments characteristic rasping timbre. The tarka produces two different musi-

cal sounds with different digitizations, the roll and non-roll. These sounds are multiphonic,

generated by a monophonic instrument in which two or more pitches can be heard simulta-

neously. Time series analysis using concepts such as power spectra, autocorrelation function,

chaoticity tests, phase space reconstruction, Lyapunov exponents, and entropy–complexity

measures have been used to characterize the tarka’s sounds. This interplay of spectral tech-

niques, nonlinear analysis and the peculiarities of the tarka gives us a unique insight into the

acoustics of artisanal instruments and furthermore an explanation relevant to other nonlin-

ear generators.

I. INTRODUCTION

The tarka is a multiphonic musical wind instrument (Fig. 1) with an unusual timbre that is

highly appreciated for its aesthetics amongst Andean communities1–3. Multiphonic behavior has

generated a great deal of interest among the scientific community.

Existing works and literature provide some relevant lines of study that could contribute to

the explanation of the tarka’s multiphonic behavior. The mainstreaming of multiphonic effects

has been well documented4 and according to Maganza et al.5 many wind instruments belong to

a class of nonlinear systems that exhibit very interesting behaviors, such as, the evolution from

quasiperiodic to chaotic regimes. Fletcher6 studied the mode-locking favored by the nearly har-

monic normal mode frequencies of a musical instrument and found that those instruments capable

of maintaining a tone are essentially composed of one or more resonator systems that act in a

markedly linear manner but are excited by a nonlinear source. Therefore the natural modes of a

resonator are never really in perfect harmonic relations.

Having established the nonlinear nature of certain musical instruments and their respective

sounds, Wilson and Keefe7 calculated Lyapunov exponents, correlation dimensions and the in-

stability of tones in clarinets. While Keefe and Laden studied the correlation dimension of mul-
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FIG. 1. Tarkas: the long and short instruments are known respectively as taikas (T) and malas (M). See also

Section II for notation and sizes.

tiphonic tones of wind instruments4, in which they concluded that trajectories within the phase

space of multiphonic sounds are examples of strange attractors and probably behave as chaotic

systems. Furthermore, Lauterborn and Parlitz8 explained some of the implications of bifurcations

and limit cycles in the context of acoustics.

Another approach was taken by Castellengo9, who related multiphonics to the presence of

variations or discontinuities of the bore cross-section; the relative position, the diameter and the

thickness of the finger holes.

The purpose of this work is to reveal the mechanisms behind the multiphonics of the tarkas

distinct sound types. While these sounds can be differentiated acoustically there has been no

physical understanding of this phenomenon1,2. Using the above ideas we carried out spectral and

nonlinear analyses with surprising and interesting results as will be explained within the paper. Our

approach consisting in the interplay of spectral techniques, nonlinear analysis and the peculiarities

of the tarka gives a unique insight into the acoustics of artisanal instruments and furthermore an

explanation relevant to other nonlinear generators. In Section II, we give necessary notation and
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definitions that are used within the paper. An explanation of the experimental details relevant to

the spectral and nonlinear analysis are outlined in Section III. This analysis is used to determine

and describe the specific features of the different sounds of the tarka. In Section IV we present

final comments, conclusions and provide perspectives for further developments.

II. NOTATION AND DEFINITIONS OF TARKA

In order to have a uniform language and clear concepts on what concerns the characteristic

sounds of the tarka, we detail notation used throughout the paper and give the definitions of roll

and non-roll sounds.

A. Notation

Abbreviations are used to refer to the different notes or sounds. These are composed of a

capital letter and a series of numbers. The letters T and M refer to the taika tarka, and mala tarka

respectively. The numbers indicate the fingering, i.e., the finger holes covered (top to bottom) to

produce a particular note. For example, T123 is a sound produced by a taika tarka in which the

top three finger holes are covered. While T0 refers to a sound produced by the taika in which all

the holes are uncovered.

We base our analysis on sounds produced by fingerings used by indigenous players of the tarka

and also other fingerings relevant to the study, namely:

non-roll T0, T1, T2, T3, T5, T25, T2345,

M1, M123,

roll T12, T123, T1234, T12345, T123456, T235, T23456, T3456,

M12, M1234, M12345, M123456, M23456, M3456.

Those shown in boldface are the typical fingerings used by musicians.

B. Definitions of roll and non-roll sounds

When played at different blow pressures, the tarka has several distinguishable sounds described

in Section IV B. However, the main focus of this study is a classification of the sounds aestheti-

cally sought by experienced tarka musicians, played at an appropriate blow pressure with known
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digitisations. These characteristic sounds are known as tara and non-tara1,2 and in this paper are

referred to as the roll and non-roll.

A multiphonic roll sound is a hoarse, shrill and twangy sound9,10 showing a perceptible, pe-

riodic pulsation (modulation of amplitude) varying roughly between 1 Hz and 20 Hz. In order

to produce the roll effect in a tarka the musician must blow energetically and accurately hook

the right blow pressure which depends on the transient attack and the skill of the musician. The

roll sound seems to have its origins in the inharmonicity of the partial tones. For our purposes

we define the roll sound by means of the sonogram shown in Fig. 2. The roll sonogram shows a

characteristic pattern with a very weak first fundamental and intense levels at 2 and 3 (octave and

twelveth). The lines are interrupted periodically, i.e., they pulsate. This is also seen in the wave-

form where fluctuations in the envelope show a periodic increase and decrease in the amplitude

or intensity. What is described in the sonogram and the waveform is a sound that is multiphonic

with a roll effect9. For the non-roll sound (T1), Fig. 2 shows that the sonogram frequency lines

are continuous and uniform. The most intense harmonics are 2, 1, 3, etc. in decreasing amplitude

order; however, there is also a group of intense harmonics between 4 and 8 kHz which make the

sound vociferous. We observe blow noise, characterized by the grey background in the sonogram.

III. EXPERIMENTAL METHOD AND SETUP

In this section, we first give the main features of a tarka from its construction point of view

and also consider the cultural aspects related to the musicians playing the tarka. Thereafter, we

describe the recording process and data collection protocols for the time series analysis.

The tarka is a type of duct flute which has a rather unusual rectangular shape (Fig. 1) and is

usually made from wood such as mahogany (Swietenia macrophylla-king) or jacaranda (Jacaranda

mimosifolia). It has a mouthpiece and six lateral finger holes but no thumbhole. The beak has a

block with a windway which guides the air jet to the labium producing an edge tone effect. Tarkas

have notable variations in their bore section, the internal shape is irregular resembling a bowed

cylinder or stem vase, hereafter called vase shape (Fig. 3).

Tarkas are played together in a tropa (ensemble). This ensemble usually involves between 6 and

24 instruments of differing sizes; small, medium, and large in length. They are played together in

parallel fourths, fifths and octaves, as well as, other intervals which are often dissonant producing
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FIG. 2. Samples of waveforms and sonograms for the taika: the non-roll sound occurs when the first upper

finger hole is covered (T1) and the roll sound when the first two upper finger holes are covered (T12). The

sounds in the form of wav files are available as supplemental material11.

the musical form known as tarqueada. Each region or community has its own acoustic preferences

and ensembles, providing them with their own particular identity.

For this work, we mainly concentrate on the properties of two instruments of the tarka family,

which exhibit typical acoustic behaviors1. These tarkas were made in Hualata Grande (La Paz),

the most prestigious village of ethnic flute makers in Bolivia.
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FIG. 3. X-ray images of a taika tarka in which we observe the typical vase-like shape of the internal hollow

carved by the instrument maker with the aim of obtaining the instruments characteristic multiphonic sound.

Note the difference in the geometry between the frontal and lateral views. The longitudinal length of the

above taika is 41 cm. Image taken by Edwin Centeno, U.M.S.A.

The tarka flutes were measured: a medium sized (taika) and a small sized (mala) from a class

of ensemble (tropa) called ullara. Table I and Fig. 4 show the tarka used, its characteristics and

measurement studies including acoustic longitudes, hole diameter, and labium size. The mala is

approximately one third shorter than the taika.

FIG. 4. Acoustic measures of the tarka. These measures are given in Table I.
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Tarka X1 X2 X3 X4 X5 X6 L

Taika 22.4 25.5 28.5 31.65 34.80 37.95 46.3

Mala 14.2 16.35 18.45 20.5 22.55 24.55 30.5

Tarka P I S a b Ch A E φ ∅i

Taika 2.2 0.65 0.75 1.5 1.8 0.3 3.8 3.2 1.9 1.0

Mala 1.9 0.6 1.1 1.5 1.2 0.2 3.6 2.45 1.2 0.85

TABLE I. Measurements in centimeters of the taika and mala used to record the sounds and represented in

Fig. 4. ∅i is the bore diameter which is constant for all the finger holes (i = 1 to 6).

The sounds, played by A. Gérard, were recorded with a digital computer system in an ane-

choic chamber using Behringer ECM 8000 and dbx (flat frequency response) microphones and a

recording software set to 16 bits and 44.1 kHz (sampling rate). For the analysis the data range was

between 1 to 216 = 65536 points.

Guided by the sonograms we worked solely with the stable parts and eliminated the transient

parts of attack and release. The same procedure was applied when we investigated the changes

of regime due to variations in the blow pressure, i.e., we only considered the stable part of each

regime. The duration of the time series were approximately 1.6 seconds for a constant blow

pressure and around 4 seconds for increasing blow pressure.

IV. ANALYSIS

The first part of this Section looks at the spectral analysis of the recorded tarka sounds. We

concentrate our analysis on the autocorrelation functions and power spectra while in the second

part we look at nonlinear behavior using phase space reconstruction techniques12–14 and the com-

putation of Lyapunov exponents and Kaplan-Yorke dimension of the attractors resulting from the

reconstructed phase space. Our analysis is based on the use of TISEAN algorithms12,15 and when-

ever needed we checked our results with well known sounds such as the recorder or synthesis

generated sounds and also by making our own programs.
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FIG. 5. Power spectra A, B of non-roll sounds with fingerings T0 and M123, C, D of roll sounds with

fingerings T123 and T1234. Graphs E, F show peaks taken from specific frequency ranges of graphs C and

D respectively. The distance between fx and fy contributes to the typical roll sound.
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A. Spectral behavior

In the power spectra of the non-roll sound (Fig. 5) the intensity of the second frequency is

generally higher than the first. The most notable exception is shown in Fig. 5B where the second

frequency is much smaller in intensity than the first while the first and third frequencies have

similar values in intensity. However, the ratio in all cases between the first two frequencies is

equal to 2. Other lower intensity frequencies are integer multiples of the first frequency i.e.,

harmonic-like behavior.

T12 T12345

f [Hz] P(f) [arb. units] f [Hz] P(f) [arb. units]

490 5.75e-7 369 9.76e-8

f1 507 7.09e-6 388 2.43e-8

523 3.61e-4 400 7.75e-5

541 1.39e-6

997 3.80e-6 770 7.94e-6

f2 1031 6.66e-3 786 1.04e-3

1065 1.84e-5 800 4.56e-6

1081 6.05e-6

1503 8.05e-7 1171 2.53e-5

f3 1537 1.68e-4 1186 3.54e-3

1554 3.88e-3 1217 1.75e-6

1587 2.47e-6

2011 8.67e-7 1554 1.05e-7

f4 2060 1.46e-5 1571 1.11e-6

2078 1.59e-5 1585 1.36e-7

2094 3.70e-6 1602 1.05e-7

TABLE II. The first frequencies of the power spectrum of the roll sounds with their respective intensities

for T12 and T12345. The numbers in bold refer to the main peak. T12 is related to Fig. 5 C while T12345

is related to Fig. 8 A3.

The power spectrum frequencies for the roll sound are not harmonic and occur in bundles as

10

http://dx.doi.org/10.1063/1.4962916


can be seen in Fig. 5 and Table II. The intensity of the second (f2) or third (f3) frequencies are

the strongest and sometimes the intensity of the first frequency f1 is very small. In Fig. 5 it can

also be observed that for T12, f2 is bigger than f3 while for T1234, f3 is more intense than f2. In

addition, the frequencies are not multiples of the fundamental f1 and obey the rules f3 = f2 + f1

and f1 + f4 = f2 + f3. This behavior is observed in second harmonic generation systems16 and as

f4 = f1 + 2f2, we need a third order or cubic static nonlinearity to describe these components17.

Furthermore, there are usually two peaks fx and fy separated by approximately 10 to 20 Hz one

higher than the other. Sometimes the high peak is first and at other times it is second (Fig. 5).

We found that this characteristic is present but not always clearly defined as in graph F of Fig. 5.

An example of the contribution of these peaks to the composition of the roll sound is seen in the

sonogram of T12 (Fig. 2) where it is clearly defined at higher frequencies. We observe a pattern

similar to a brick and mortar wall of intercalated changes of frequency intensity. In addition,

the different frequencies have these interruptions at different times. These pulsations seem to be

responsible for the rasping beating effect heard in the roll sound.

Looking at the autocorrelation functions there exist two or more peaks of which one is always

higher than the others, Fig. 6. Graphs A and B are for the non-roll sound with two different

fingerings. Graph A shows a correlation pattern with a uniform amplitude showing two charac-

teristic peaks. In graph B the uniformity of the amplitude continues; however, the pattern-form

becomes more elaborated. Graphs C and D are for the roll sound and we observe through the

correlation functions a more complicated behavior of the peaks which will be further discussed

in Section IV C and seems to be related to its hyperchaotic behavior. In all cases with similar

patterns to those seen in graphs C and D we find two positive Lyapunov. Whereas in the cases

exemplified in graphs E and F for the roll sound there is only one positive Lyapunov exponent and

consequently no hyperchaos is present.

The observed peaks in the autocorrelation function for the roll sounds in Fig. 6 are related to

the second harmonic resonance found, i.e., f1 + f4 = f2 + f3.

B. Analysis of increasing blow pressure

When a musician increases the blow pressure in a linear manner the jumps between regimes in

the sonogram are notable. By increasing the blow pressure of the excitation system, the tube suc-

cessively changes regimes permitted by the geometry of the resonator from mode 1 (fundamental)
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FIG. 6. A, B show the variety of autocorrelation functions observed for non-roll (A is T1 and B is

M123). C, D show typical functions for roll sounds that are associated with hyperchaos (C is T12 and D is

T12345). Finally, E, F refer to roll sounds associated with chaos but not hyperchaos; in E, the two small

peaks observed in C are not well defined while in F these peaks change very slowly with time (E is M12

and F is M1234).
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to mode 2 (harmonic 2) and then mode 3 and so on (successively). In each of the modes a regime

is established, that is a special harmonic configuration, with partials and noise that form a certain

sound structure that is particular to each case18. However, in the case of the tarka (Fig. 7), some-

thing unusual occurs. In this paper, we describe the variety of spectral and nonlinear phenomena

observed leaving the acoustical analysis such as acoustic regimes for further work (Figs. 8 and 9).

Another observed phenomenon is quenching (Fig. 10) which occurs in self-sustained oscillators

when the amplitude increases due to high blow pressures and thereafter suddenly plummets. It is

a well-known phenomenon in coupled systems and is generally due to high values of the coupling

strength which acts on the interaction of the excitatory source with the resonator19–21. This phe-

nomenon occurring in coupled oscillators is related to the emergence of amplitude and oscillation

death22 that may be manifested totally or partially19, and is produced by means of time-delay or by

strong coupling23. The mechanisms of oscillation quenching are explained widely24, and different

transitions from amplitude to oscillation death25.

In order to exemplify the observed phenomena, we look at the roll and non-roll cases shown in

Fig. 7. For the type of analysis used in this paper we only focus on the stable parts which in both

cases are four.

For the roll case, each stable part (A1, A2 and A4) exhibits its highest intensity peak first and

then follows with lower peaks which are multiples of the highest intensity peak as shown in Fig. 8.

Whereas the third stable part (A3) has its third frequency higher than the second which in turn is

higher than the first. This behavior has already been described when T12345 was observed as a

whole sound11.

For the non-roll sound T1 in Fig. 8, in all the stable parts B1 to B4, the frequencies are multiple

integers of the fundamental. However, in this case the changes in intensity are responsible for the

different phenomena. In B1, the fundamental has the highest intensity, in B2 the intensities of

the fundamental and the second harmonic are similar while in B3 the second harmonic is much

higher than the fundamental. Finally in B4 the second harmonic becomes the fundamental with its

respective harmonics; this jump is well known and has been explained above with the respective

literature18. Looking at the changes with time, we see that the autocorrelation function is a well

behaved single distribution for B1 and B4, in B3 we see the typical behavior for the non-roll. An

interesting feature occurs in B2 where we observe the onset of the non-roll phenomenon. For

completeness and comparison we include in Fig. 9 the autocorrelation functions for the roll case

where we see more abruptly changes in the different patterns.
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FIG. 7. Waveforms and sonograms obtained by gradually increasing the blow pressure for the roll sound

(T12345) above and for the non-roll sound (T1) below. Sections are marked and correspond to stable

parts which were analysed. Note that the blow pressure for A1 (pA1) is less than the other parts, i.e.,

pA1 < pA2 < pA3 < pA4. The same applies to the T1 sound and B parts, i.e., pB1 < pB2 < pB3 < pB4.

The sounds in the form of wav files are available as supplemental material11.

C. Analysis of the nonlinear dynamics of taikas and malas

Given the nonlinear tendencies observed in the regions A3 and B3 and to further understand the

dynamics we use standard nonlinear techniques to analyze the system. With this aim we carried

out periodicity tests which do not show any periodic behavior in the considered digitizations. We
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FIG. 8. Power spectra of the different stable parts when the blow pressure is varied: A1, A2, A3, A4 are for

T12345 and B1, B2, B3, B4 are for T1. These graphs are related to the sonograms in Fig. 7.
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FIG. 9. Autocorrelation functions of the different stable parts when the blow pressure is varied: A1, A2,

A3, A4 are for T12345 and B1, B2, B3, B4 are for T1. See the corresponding power spectra and phase

spaces for a more complete picture of the increased blow pressure.
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FIG. 10. The evolution of the observed waveforms of T1 when one increases the pressure. We clearly see

the phenomenon of quenching as a result of the coupling.

also performed z1 tests26 in order to determine whether the time series are chaotic or not. Then the

phase space was reconstructed using the time lag and the embedding dimension. This was followed

by the computation of Lyapunov exponents and the Kaplan-Yorke dimension which determine

whether the system’s behavior is chaotic or hyperchaotic27–30. Additionally, other techniques were

explored, such as, the resampling of time series to improve the statistics for the determination

of the Lyapunov exponents31,32. Also, recurrence plots33 and their implications on distinguishing

hyperchaotic-chaotic transitions34 were investigated, as well as, the construction of complexity vs.

entropy planes35,36.

In order to obtain the embedding dimension and therefore reconstruct the phase space from

the time series, firstly, we compute the time lags by means of the autocorrelation function or the

mutual information. Then, with the obtained time lags, the embedding dimension is computed

by the method of false nearest neighbors. Once the above mentioned quantities are obtained, the
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Lyapunov exponents and Kaplan-Yorke dimension were also computed from the time series by

means of the Sano and Sawada algorithm37. The most relevant results of the main fingerings are

shown in Table III.

As mentioned above, we reconstructed the phase space using the time series corresponding to

the parts A3 and B3 (see sonograms of Fig. 7). These parts are related to the musical sonority

of the Tarka which is our particular interest. The non-roll sounds have one positive Lyapunov

FIG. 11. Projection of the attractors corresponding to the time series of different digitizations. T1 is for a

non-roll case, T23456 is for a chaotic roll sound. T12 and T12345 are examples of hyperchaotic attractors.

The four images are for 3000 data points. Note that the numbers seen in the y-axis refer to the time lags as

explained in the text.

exponent in part B3 of the sonogram shown in Fig. 7, thus, exhibiting chaotic behavior. For the

roll sounds, in the taika most of the digitizations have two positive Lyapunov exponents which

indicates hyperchaotic behavior; T235 and T23456 being the exceptions where the behavior is

chaotic. In the case of the mala, only M12345 has two positive Lyapunov exponents.
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Fingering sound time lag embedding dim. Lyapunov exponents DKY z1

T0 non-roll 8 8 0.0266 -0.0174 -0.0531 2.1737 0.9922

± 0.0011 ± 0.0008 ±0.0008 ± 0.0107 ± 0.0016

T1 non-roll 11 8 0.0195 -0.0276 -0.0606 1.7089 0.8914

± 0.0009 ±0.0008 ±0.0012 ±0.0432 ± 0.0185

T25 non-roll 11 9 0.0368 -0.0051 -0.0329 2.9649 0.9859

±0.0007 ±0.0014 ±0.0011 ±0.0228 ± 0.0039

M1 non-roll 7 7 0.0095 -0.0443 -0.0868 1.2145 0.8743

±0.0006 ±0.0009 ±0.0011 ±0.0111 ± 0.0194

M123 non-roll 9 7 0.0190 -0.0388 -0.0844 1.4908 0.9799

±0.0007 ±0.0008 ±0.0014 ±0.0189 ± 0.0045

T235 roll 5 5 0.0532 -0.0682 -0.1863 1.7803 0.9655

±0.0004 ±0.0006 ±0.0006 ±0.0059 ± 0.0066

T23456 roll 5 6 0.1579 -0.0151 -0.1957 2.7297 0.9522

±0.0003 ±0.0001 ±0.0004 ±0.0010 ± 0.0098

M12 roll 5 5 0.0756 -0.0559 -0.2064 2.0952 0.8764

±0.0005 ±0.0007 ±0.0009 ±0.0034 ± 0.0166

M1234 roll 5 5 0.0949 -0.0256 -0.1415 2.4902 0.8368

±0.0007 ±0.0006 ±0.0007 ±0.0020 ± 0.0206

T12 roll 11 8 0.0769 0.0122 -0.0374 3.6442 0.9161

±0.0006 ±0.0004 ±0.0010 ±0.0108 ± 0.0150

T123 roll 10 6 0.1192 0.0044 -0.0835 3.2390 0.8830

±0.0006 ±0.0004 ±0.0009 ±0.0019 ± 0.0180

T1234 roll 9 6 0.1243 0.0095 -0.0864 3.2627 0.9136

±0.0005 ±0.0007 ±0.0004 ±0.0021 ± 0.0156

T12345 roll 11 7 0.0913 0.0052 -0.0614 3.2939 0.9807

±0.0006 ±0.0009 ±0.0006 ±0.0066 ± 0.0048

T123456 roll 8 6 0.1066 0.0046 -0.0852 3.1480 0.9206

±0.0002 ±0.0001 ±0.0006 ±0.0021 ± 0.0138

T3456 roll 7 6 0.1229 0.0192 -0.0716 3.4432 0.9109

±0.0003 ±0.0003 ±0.0002 ±0.0014 ± 0.0161

M12345 roll 9 6 0.0522 0.0021 -0.0360 3.2661 0.9867

±0.0006 ±0.0007 ±0.0006 ±0.0091 ± 0.0034

TABLE III. Time lag, embedding dimension, three largest Lyapunov exponents, Kaplan-Yorke dimension

DKY and factor z1 for the three observed cases: non-roll, roll chaotic and roll hyperchaotic. The table

shows the values corresponding to the main digitizations that are representative of the three cases.
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The estimation of the Kaplan-Yorke dimensions DKY (Table III) shows that for hyperchaotic

digitizations the Kaplan-Yorke dimension is greater than three.

In graph T1 of Fig. 11, a typical non-roll sound is shown. All the non-roll sounds of the tarka

show this loop geometry, suggesting the existence of a homoclinic orbit. There are two cases to

consider for the roll sound and these are shown in Fig. 11: a chaotic example seen in graph T23456

and two hyperchaotic examples in graphs T12 and T12345. These projections show similarities

with well-known chaotic and hyperchaotic attractors found in the literature (see for instance38–41

among others).

Taking into account the resampling method, we generated new time series for some digiti-

zations, namely T0, T12, M1 and M12345, and computed the Lyapunov spectra for these new

resampled time series obtaining similar results to those of the original series. These results rein-

force, a priori, our assertions concerning the chaotic (found for non-roll sounds) and hyperchaotic

(mainly found in roll sounds) behavior.

As stated above, the z1 factor measures the chaotic features of the time series. When the z1

value is close to zero the time series is regular and when it is close to one it is chaotic26. Fig. 12(a)

shows the evolutions of the z1 factor for typical digitizations for non-roll (T0 and M1) and roll

(T12 and M12345) sounds. We note that for the non-roll sounds, the evolution towards a value

of one is quicker than for the case of roll sounds this is also manifested in Table III. In general,

the z1 uncertainties associated with roll sounds are greater than those corresponding to non-roll

sounds. Recently, new interesting techniques for measuring complexity have been proposed35,36

and we have used these to obtain preliminary results of complexity and entropy measures for the

studied time series as shown in Fig. 12(b). It is interesting to note that different sounds tend to

occupy certain well-defined regions of the plane complexity vs. entropy and this could be useful

for the classification of sounds and even instruments.

V. CONCLUSIONS AND PERSPECTIVES

The tarka has a single excitatory source and is designed in such a way that certain fingerings

with the appropriate applied air jet pressure produce two physically distinct acoustic behaviors:

the roll and non-roll sounds.

From diverse analyses, we claim the existence of chaotic and hyperchaotic behavior associated

with non-roll and roll sounds respectively. Looking in more detail at the two distinctive types
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FIG. 12. (a) Evolution of the z1 factor that measures the chaotic features for the time series corresponding

to the digitizations T0, T12, M1 and M12345. (b) Plane complexity vs. entropy for embedding dimensions

5 and 6 whose minimum and maximum borderlines are clearly defined. The measures of complexity and

entropy for the digitization time series with embedding dimensions (5 and 6) are also shown on the plane.

of sound we observe that the non-roll sound exhibits in its power spectrum a second harmonic

higher than the first and according with our results has one positive Lyapunov exponent. While the

second harmonic-like generation behavior of the roll sound suggests that any future model should

be based on an anharmonic oscillator equation42.

The asserted chaotic and hyperchaotic behaviors of the roll sound seem to be associated with

the interplay of the different peaks observed in the autocorrelation function. This can also be seen

in the power spectra where the relationship between the first three frequencies is very important.

In the case of the taika, the first three intensities are well defined while the mala has less defined

intensities. It does not seem to matter whether the intensity of the second frequency is higher than

the third, or the other way round. Currently we are not in a position to model the hyperchaotic
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behavior observed. The distinctive beating heard in the roll sound might best be modeled on the

ideas of Sliwa et al.43.

The roll and non-roll sounds are observed in different fingerings and both are bounded by two

linear parts (A1 and A4 or B1 and B4 respectively) when the blow pressure is changed. If the blow

pressure is very high quenching occurs.

The geometrical aspects of the tarka suggest that chaos and hyperchaos are related to the non-

linearities observed in this instrument, and coincide with the sound (musical sonority) sought by

the instrument maker and musician. Moreover, these intrinsic nonlinearities might enhance the

nonlinear perception of the hearing system as stated by Cartwright et al44.

We are aware that the nonlinear measures of chaoticity and complexity require special attention

and careful analysis in order to reinforce our results. To this end we have considered new tech-

niques and the suggestions for nonlinear time series analysis made in45 to obtain a deeper insight

into the complex sounds produced by this wind instrument.

In this paper we have presented the phenomenological behavior of the tarka further unraveling

the mystery behind the tarka’s rare and unusual timbre. The time series analysis applied to the

tarka sounds allowed us to improve the understanding of the acoustical aspects of this instrument.

This and future studies such as a thorough aerodynamical and geometrical analysis and controlled

pressure experiments can help towards a more complete understanding of the link between acous-

tics, artisanal instrument fabrication techniques and the musical aesthetic of Andean communities.
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