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Abstract

We study the influence of uniform noise on a system of two light-
controlled oscillators (LCOs) under three different configurations: un-
coupled, master–slave and mutually coupled LCOs. We find that noise
can induce desynchronization via a phase transition-like phenomenon
depending on the noise intensity and the characteristics of the LCOs.
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1 Introduction

Synchronization is a common phenomenon that occurs in oscillators coupled
among themselves or driven by external time-dependent forcings. Recently,
a new class of oscillators has been introduced which exhibits synchronization
in a very simple experimental setup [Ramı́rez Ávila et al., 2003a]. The origi-
nal motivation was to model communication in certain biological systems like
fireflies, but it turns out that the oscillator devised to that effect has a wide
range of applicability. An LCO is a device made up of a timer chip LM555
in its astable functioning mode, two RC circuits (containing resistors Rλ and
Rγ, and a capacitor C), infrared LEDs, and photosensors; the optoelectronic
components allow the LCOs to interact with one another. Basically, an LCO
is a relaxation oscillator in the sense that it possesses two time scales: within
each cycle there are intervals of slow (charging stage) and fast voltage varia-
tions (discharging stage, when the LCO fires), and the form of the oscillation
is therefore very far from a simple sine wave; it is rather pulse-like. The
period of an LCO is linked to the resistors and capacitor values and it is
given by T = Tλ + Tγ, where Tλ = (Rλ + Rγ)C ln 2 is the time of the charg-
ing process and Tγ = RγC ln 2 that corresponding to the discharging stage.
A system of interacting LCOs is an excellent example of pulse-coupled os-
cillators, just as coupled fireflies that the LCOs mimic. In the system of
LCOs, we have understood synchronization as an adjustment of rhythms of
self-sustained oscillators giving rise to a phase locking ∆φij = const1 and
working in conditions when natural disturbances were minimized that per-
mitted us to postulate a model fitting well the experimental results. The
presence of perturbations is almost unavoidable, however, it is important
to handle them because these fluctuations can substantially modify the sys-
tem’s behavior [Garćıa-Ojalvo & Sancho, 1999]. In this paper, we analyze the
case in which the oscillators are influenced by a bounded uniform noise in a
wide range2. The noise acts on the voltage supply (VM), causing changes to
the LCOs’ amplitude signal which remains constant for noise-free oscillators.
This type of setup could be conceived using a digital noise generator such as
that described by Browne [2002]. The choice of uniform noise is related to
the fact that for our oscillators it is more natural to have upper and lower
voltages within certain limits. On the other hand, it is interesting to work

1Even if this definition does not include some nontrivial phenomena
2In a forthcoming paper is analyzed the Gaussian noise case

2



with this kind of noise because it acts strongly on the system. Recently, sev-
eral works have been devoted to the study of the influence of noise on coupled
maps [Kim et al., 2003] or oscillators [Zhou et al., 2002b; Kiss et al., 2004].
Most of them deal with phase synchronization induced by a common noise
acting on the system [Teramae & Tanaka, 2004]. Here, we analyze a system
of two LCOs under three different configurations: uncoupled, master–slave
and mutually coupled, considering noise acting on each LCO. The equations
that describe the model for N LCOs are:

dVi(t)

dt
= λi[(VMi + (1− 2ζi(t))

√
D)− Vi(t)]εi(t)− γiVi(t)[1− εi(t)] +

N∑
i,j

βijδij[1− εj(t)]; i, j = 1, . . . , N. (1)

Here the oscillator state εi(t) is given by:

εi(t) = 1, extinguished LCO (charge)
εi(t) = 0, fired LCO (discharge),

in which εi(t) changes its value when it reaches the upper threshold (2VM/3)
or the lower threshold (VM/3). The parameters, λi = ln 2/Tλi, γi = ln 2/Tγi

(depending on the LCOs’ electronic components) characterize the LCOs’
charge and discharge stages, βij is the coupling strength, δij = 1 if the LCOs
may interact and δij = 0 otherwise. Finally, ζi(t) is a random number chosen
from a uniform distribution on the interval [0, 1]. The uniform noise is given
by (1 − 2ζi(t))

√
D defining new lower and upper thresholds on a uniform

distribution according to the value of
√

D.
We define the instantaneous phase of an LCO (with label i) in accordance

with the Poincaré map method [Neiman et al., 1999; Rosenblum et al., 1997;
Pikovsky et al., 1997, 2001]:

φi(t) = 2π

(
t− tki

tk+1
i − tki

)
+ 2πk

This definition of the phase gives the appropriate result in the case of LCOs
whether the oscillations are merely periodic or if they are disturbed by noise,
since we can consider the beginning of the flashing events as the points lying
on the Poincaré section in the phase space. Using this concept, we can define
the instantaneous linear phase difference (LPD) between oscillators in terms
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of the difference among the flashing time of each LCO, considering one of
them as the reference oscillator. For a system of two LCOs, the LPD when
the LCO1 achieves its (k + 1)th firing event can be written as:

∆Φlinear
12 (t

(k+1)
1 ) = φ2(t

(k+1)
1 )− φ1(t

(k+1)
1 ) = 2π

t
(k+1)
2 − t

(k+1)
1

t
(k+1)
2 − t

(k)
2

, (2)

where t
(k+1)
1 , t

(k+1)
2 represent the times at which the (k + 1)th firing event

of LCO1 and LCO2 respectively is produced. Note that the phases φ1,2

are defined on the whole real line and due to the phase slips, it is better
to introduce the cyclic relative phase [Schäfer et al., 1999] in order to define
phase locking in noisy systems via synchrograms [Schäfer et al., 1998; Neiman
et al., 2000]. The cyclic phase difference (CPD) gives a result on the circle
[0 : 1]. It is obtained from the LPD as:

∆Φcyclic
12 (t

(k+1)
1 ) =

1

2π

[
∆Φlinear

12 (t
(k+1)
1 ) mod 2π

]
. (3)

Hence, Eqs. (2)–(3) can be used to describe synchronization with strobo-
scopic observation. Using Eq. (1) we have performed simulations to study
the influence of uniform noise on LCOs. In Eq. (1) we associate

√
D to the

noise intensity that we vary in the interval [0, 4].
One way to characterize synchronization in a system of LCOs is comput-

ing the statistical moments (mean and variance) for both LPD and CPD.
We have found that the mean LPD and the CPD variance exhibit the clear-
est pictures to detect synchronization, since when it occurs these quantities
are almost constant and near to zero. In consequence, we use throughout
this paper the variance of the CPD and the CPD probability densities to
determine synchronous regimes.

In Sec. 2, we study the uncoupled LCOs case. The results of the case in
which an LCO drives another LCO (master–slave) are shown in Sec. 3. The
case of two mutually coupled LCOs (same hierarchy) is analyzed in Sec. 4.
Finally, we construct an extended state diagram in Sec. 5 showing how the
Arnold tongues are modified by the presence of noise in the master–slave and
mutual coupling configurations.
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2 Uncoupled LCOs

When an LCO is not affected by noise, its period remains constant and we
can characterize a system of two uncoupled LCOs by the following facts:

- For identical LCOs (T01 = T02), the LPD is such that it remains con-
stant but not necessarily zero (black line in Fig. 1(a) and in the inset).
Consequently, the CPD probability density, corresponding to the time
series, is a δ-function (Fig. 1(b)).

- For non-identical LCOs (T01 6= T02), the LPD grows (T01 < T02) or
shrinks (T01 > T02) with a definite slope as is shown in Fig. 1(f))
(black line). Thus the CPD probability density shows multiple modes
(Fig. 1(g)).

Now, considering the noise effects in the systems described above, we
note that for the identical LCOs system, the LPD may behave in a diffusive
way, performing a motion that recalls a random walk (red line in the zoomed
region of Fig. 1(a)). When the noise is quite strong, the picture that is
obtained reminds turbulence (green line in Fig. 1(a)). The CPD probability
densities for different noise intensities are depicted in Figs. 1(b)–(e).

If the LCOs are not identical, weak noise intensities do not change signi-
ficatively the LPD evolution even for large times. When the noise intensity
is sufficiently strong, the LPD evolution at the beginning remains almost
constant as in the case of weak noise intensities but as time goes on, the
noise effects become significant as shown in Fig. 1(f) (red line). Even though
the LPD still decreases, a random walk-like behavior can be seen along the
corresponding straight slope. For strong noise intensities, the LPD behavior
is similar to that observed in the corresponding case of identical LCOs, i.e. in
a turbulent-like way. It is interesting to note that when the noise is strong,
both CPD probability densities (identical and non-identical LCOs) are quite
similar suggesting that the intrinsic differences between the systems are not
relevant when noise intensity is very strong. In this case, the LCOs’ periods
can change abruptly and they are far from being constant.

For the probability densities, it is better to work with the normalized
(cyclic) phase difference, which characterizes the system in a better way and
avoids a confusing interpretation. For instance, in the case of very strong
noise, the LPD distribution shows a unimodal picture, but this does not
mean that a definite value of LPD is more probable; rather it is only the
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effect of the LPD diffusing and decaying in time. On the contrary, CPD
distributions show the stochastic behavior of the system and remain quite
uniform even for strong noise. Therefore, the CPD probability density will
be one of our main tools to analyze LCO systems.

3 Master–Slave Configuration

We now consider the case where one LCO (the master) drives another (the
slave), in the sense that the master influences the slave but is blind to the
light coming from the slave and from the environment. We expect that
synchronous behavior is present when the LCOs are not very different and
when they are noise-free. Let us take LCO2 as the master-LCO.

When the LCOs are identical (Fig. 2(a)), we observe that the synchro-
nization phenomenon is only produced when the noise intensity vanishes
(Fig. 2(b)), i.e. any noise influencing the system destroys the synchronous
regime (Figs. 2(c)–(d)). Figure 2(a) is explained by the fact that noise
shrinks the synchronization region (see the Arnold tongues in Fig. 4(a) of
Sec. 5) and as a consequence, for the case of identical oscillators, the syn-
chronous regime is lost even with a small noise intensity. This may be ex-
plained due to the dynamics of the master–slave configuration since the im-
pulses of the master modify the slave’s period (most often shortening it) and
since the synchronous regime is weakly stable for the case of identical LCOs
under a master–slave configuration, the action of noise produces desynchro-
nization between the LCOs. On the other hand, when the LCOs are different
(Fig. 2(e)), the synchronous region is maintained when the noise intensity
is weak (Figs. 2(f) and (i)). In Fig. 2(e), we can see that the synchronous
regime “resists” better to noise influence when the master-LCO is more dif-
ferent from the slave LCO, i.e. the greater the difference among LCOs, the
greater the synchronous region, but the transition region becomes larger too.
It is clear that this last point is valid only when the LCOs’ characteristics are
such that the values are inside an Arnold tongue (see [Ramı́rez Ávila et al.,
2003b] and Sec. 5); otherwise, we cannot refer to synchronization. In this
case, due to the fact that the master-LCO has a period less than the slave-
LCO, noise acts to stabilize the system. The CPD probability densities are
shown to indicate the transition from synchronization to desynchronization.
Finally, it is interesting to note the shape of the curves in Figs. 2(a) and (e):
the CPD variance exhibits a behavior similar to a phase transition and it
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tends to a constant value ≈ 0.083 when the system does not synchronize,
which corresponds to a uniform CPD distribution.

4 Mutual Interaction

We now consider the case when the LCOs have the same hierarchy, consider-
ing symmetrical coupling, i.e. β12 = β21 and again we analyze a system with
identical LCOs (Figs. 3(a)–(i)), and with non-identical LCOs (Figs. 3(j)–(r)).
For identical LCOs, we observe a large transition region (Fig. 3(a)) in which
for small noise intensity values (

√
D = 0.2,

√
D = 0.4), the LPD evolution

remains around zero (Figs. 3(b)–(c)), indicating that synchronization is still
present, confirmed by the CPD probability densities which contain peaks only
in the extremal values of the histogram (Figs. 3(f)–(g)). For moderate values
(
√

D = 1.75), the LPD evolution presents some phase slips so that there are
epochs where the LPD oscillates around multiples of 2π, with dynamics sim-
ilar to a random walk behavior (Fig. 3(d)) and the CPD probability density
shows a kind of transition process (Fig. 3(h)). On the other hand, for large
noise intensity values (

√
D = 2.5), the LPD evolution is random walk-like

(Fig. 3(e)) and the CPD probability density is broad (Fig. 3(i)), indicating
that synchronization is lost.

In the case in which the LCOs are not identical, the values used for
the LCO2 period are T02 = 33.5 ms (cyan line), and T02 = 34.5 ms (magenta
line), which are symmetric with respect to T01 = 34.0 ms. The CPD vari-
ance curves as a function of noise intensity are almost identical with a slight
shift in the synchronous region (Fig. 3(j)). For small noise intensity values
(
√

D = 0.2), synchronization is present for both cases (Figs. 3(k) and (o)).
At the maxima of the transition regions (

√
D = 0.4), several phase slips

appear, especially when T02 < T01 (Fig. 3(l)) and the CPD probability den-
sity again reveals a transition process (Fig. 3(p)). For noise intensity values
situated in the desynchronization region (

√
D = 1.75 and

√
D = 2.5), the

LPD evolution decays or grows (Figs. 3(m)–(n)) like in the case of uncoupled
LCOs, suggesting that noise disturbance acts in a way that the coupling is not
important. Consequently, the CPD probability densities for both cases are
broad (Figs. 3(q)–(r)). We remark again that the CPD variance is ≈ 0.083
when the system is not synchronized.
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5 Arnold Tongues

Many phenomena occurring in two coupled oscillators can be studied by
means of Arnold tongues [Arnol’d, 1965] which are useful tools to describe
phase-locking, quasi-periodic or chaotic behavior and the transitions between
these states [Argyris et al., 1994; Nicolis, 1995]. In order to characterize the
synchronous regions in coupled oscillators of different nature, it is useful to
build the Arnold tongues [Glass & Perez, 1982; Matsumoto et al., 1987; Glass
& Sun, 1994; Coombes & Bressloff, 1999; Yoshino et al., 1999; Stoop et al.,
2000; Ramı́rez Ávila et al., 2003b] that are defined as the state diagram
(generally on the frequency detuning, coupling strength plane) in which all
regions of synchronization have the form of vertical tongues [Pikovsky et al.,
2001], i.e. the motion is periodic inside these regions. As expected, the area
of Arnold tongues diminishes with noise intensity. In the case of the master–
slave configuration, the boundary values’ shift is quite asymmetric; for small
noise intensities, in practice, there is no shift in the left-boundary value. On
the other hand, the right-boundary value shift is significant. We can observe
left-boundary shifts with high noise intensities but the right-boundary shift
becomes very large as well, i.e. the asymmetric behavior on the boundary
values shift is still present, as shown in Fig. 4(a). Choosing the tongue related
to
√

D = 0.5 and considering β = 166, we can see that for T02 = 32.7 ms,
i.e. a value slightly below the left-boundary, the LPD evolution suffers several
phase slips (Fig. 4(b)) and it is expected to fall steadily; consequently, the
CPD probability density is not a δ-function and shows a tendency towards
a uniform distribution (Fig. 4(c)). When T02 = 32.8 ms, i.e for the left-
boundary, we see that the LPD remains constant (Fig. 4(d)) and the CPD
probability density tends to a δ-function (Fig. 4(e)). When T02 = 32.9 ms,
i.e. a value inside to the Arnold tongue, the LPD very quickly attains the
synchronous state and it is levelled out in time (Fig. 4(f)), and as a result,
the CPD probability density can be considered a δ-function (Fig. 4(g)).

In Fig. 4(h), the Arnold tongues are shown for the mutual coupling config-
uration. The tongues structure suggests that there exists certain symmetry
with respect to the fixed value of LCO1 period (T01 = 34.0 ms), especially
when the noise intensity is small or null and void, and the coupling strength
is not very strong (e.g. for zero noise intensity and β = 166, the left and
right boundaries are T02 = 33.4 ms, and T02 = 34.6 ms respectively, showing
that there is symmetry with respect to T01 = 34.0). On the other hand, for
zero noise intensity and β = 500 the boundaries are T02 = 32.25 ms, and
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T02 = 36.00 ms, showing that there is not perfect symmetry with respect
to T01 = 34.0 ms. As in the master–slave case, the tongues become smaller
when the noise intensity increases and their corresponding LPD evolution
and CPD probability density graphs show exactly the same behavior as in
the master–slave case. Choosing again the tongue related to

√
D = 0.5 and

considering β = 166, we see the same behavior as in the preceding case: near
to the right boundary (Figs. 4(i)–(j)), on the right boundary (Figs. 4(k)–(l)),
and inside the tongue (Figs. 4(m)–(n)). If we represent the same graphs with
the same reference LCO period but for cases with different noise intensities,
the behavior could be completely different. To conclude, the Arnold tongues
show that in the master–slave configuration, the LCOs can be very different.
However, the condition that the master’s period must be strictly equal to or
less than the slave’s period is necessary in order to achieve synchronization.
In the mutual coupling case, however, the periods may be different. Never-
theless, in comparison with the master–slave case, the LCOs periods must
not be very different.

6 Conclusions

We have observed, as expected from statistical mechanics, that uniform noise
induces disordering phase transitions, i.e. the higher the intensity of fluctua-
tions, the larger the disorder. For identical uncoupled LCOs, the noise makes
the LPD evolve in a random walk-like way or in a turbulent-like way. For
non-identical and uncoupled LCOs, the LPD evolution tends to decay or to
grow depending on the periods of the LCOs. For non-identical and uncoupled
LCOs, the LPD evolution tends to decay or to grow depending on the periods
of the LCOs. We expect that two uncoupled LCOs subjected to a common
correlated noise could exhibit noise-induced transitions similar to those de-
scribed by Zhou & Kurths [2002a]. In the master–slave configuration, even
very weak noise intensities destroy the synchronous state when the LCOs are
identical. This allows us to conclude that for this configuration the LCOs’ pe-
riods have to be different but contained inside the Arnold tongues in order to
maintain the synchronization and compete against the disturbances. When
noise acts on identical mutually coupled LCOs, the transition region is quite
large, which could indicate that the system exhibits a certain robustness to
the noise, in the sense that it is possible to observe synchronization in a sta-
tistical sense despite the action of noise with larger intensity values. On the
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contrary, in the case of non-identical LCOs, the transition region is narrow
and the system exhibits a broad distribution (desynchronization) for noise
intensity values significantly smaller than in the previous case. As stated
by several authors [Stratonovich, 1963; Heagy et al., 1995], noise can induce
phase slips in periodic oscillators; we found a similar behavior in which the
synchronization-desynchronization transition is characterized by more fre-
quent phase slips until the LPD decays or grows like in the uncoupled case
as the system is more affected by noise. It is clear that very high noise inten-
sity values act in a way that coupling seems to be broken. Concerning the
phase slips, their number is in a close relationship with the noise intensity:
the higher the noise intensity, the greater the number of phase slips. In all the
cases, the CPD variance is a good indicator to identify the system as being in
its synchronous or asynchronous state; when there is no synchrony, the CPD
variance takes a value approximatively equal to 0.083. The CPD probability
density can exhibit the passage from synchronization to desynchronization
with a shape typical of a phase transition-like phenomenon.
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Figure 1: Period values of a system of two uncoupled LCOs: T01 = T02 = 34.0
ms ((a)–(e)), and T01 = 34.0 ms, T02 = 32.0 ms ((f)–(j)). LPD evolutions
and the CPD probability densities for different noise intensities. (a) Identical
LCOs LPD evolution. For

√
D = 0.0, the LPD is constant (black line).

The inset is a magnification in the region ranging from 1500 to 1700 time
units (flashing events), where the LPD evolution is clearer. (b)–(d), the
corresponding probability densities when

√
D = 0.0,

√
D = 0.5,

√
D = 2.5,

and
√

D = 4.0 respectively. (f) Non-identical LCOs LPD evolution. (g)–(j),
the corresponding CPD probability densities as above. The evolution and
the statistics is taken over NT = 3500 flashing events.
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Figure 2: CPD variance as a function of noise intensity and CPD probability
densities for different noise intensities when the configuration is master–slave.
The period value for the slave LCO is T01 = 34.0 ms and the coupling strength
β = 166. (a)–(d) Identical LCOs case. (e)–(k) Non-identical LCOs case. The
period values used for LCO2 are T02 = 33.5 ms (green line), and T02 = 33.0
ms (magenta line). The statistics were taken over 30000 flashing events.
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Figure 3: CPD variance as a function of noise intensity for mutually interact-
ing LCOs. (a) Identical LCOs case. (b) Non-identical LCOs case, where the
period values used for LCO2 are T02 = 33.5 ms (cyan line), and T02 = 34.5
ms (magenta line). The parameter values for T01 and β are the same that in
Fig. 2. The LPD evolution and CPD probability densities for different noise
intensities are shown to indicate the transition from synchronization to desyn-
chronization for (b)–(i) identical LCOs and (k)–(r) non-identical LCOs. As
in the master–slave case, the statistics were made over 30000 flashing events.
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Figure 4: (a) Arnold tongues for a master–slave system. The LPD evolution
and CPD probability density for period values (b)–(c) slightly left-outside
(T02 = 32.7 ms), (d)–(e) on the left-boundary (T02 = 32.8 ms), and (f)–(g)
inside (T02 = 32.9 ms) the Arnold tongue (j) Arnold tongues for mutually
coupled LCOs. The LPD evolution and CPD probability density for period
values (i)–(j) slightly right-outside (T02 = 34.5 ms), (k)–(l) on the right-
boundary (T02 = 34.4 ms), and (m)–(n) inside (T02 = 34.3 ms) the Arnold
tongue. For both cases, we have considered the tongue corresponding to
the system perturbed with noise intensity

√
D = 0.50 (green patch) and the

coupling strength β = 166.
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