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Instituto de Investigaciones F́ısicas, Casilla 8635, Universidad Mayor de San Andrés, La Paz,
Bolivia.

Abstract. Using the synchrony factor and its periodicity, we are able
to identify not only complete synchronization but also in-phase syn-
chronization. The analysis of the periodicities of the synchrony factor
allows to obtain a phase diagram that contains all the information of
synchronous behavior in a wide range of parameters. This method con-
stitutes a new and useful tool to study synchronization.

1 Introduction

The study of dynamic systems and the establishment of general properties of
those systems have been favored by the inclusion of mathematical objects describing
a discrete dynamics called maps. Among the most well known maps, we can mention
the logistic map introduced by May [1] and the Hénon map [2]. An important feature
of nonlinear maps is the fact that they can give rise to chaotic behavior even in
one-dimensional maps as in the case of logistic ones.

Many works have been devoted to the understanding of dynamical properties
of maps as is shown by Kaneko in his study of period-adding phenomena in one-
dimensional mapping where he showed frequency-locking by extending the theory of
intermittency [3] and the measuring of transient chaos in one- and two-dimensional
maps [4]. Interesting phenomena were described in coupled map lattices, especially in
logistic maps, such as the transition from torus to chaos accompanied by frequency
locking with symmetry breaking [5], and the period-doubling of kink-antikink patterns
of a one-dimensional lattice [6]; the Lyapunov analysis and information flow [7], and
the spatiotemporal chaos related to Bérnard convection [8].

A traditional approach to study dynamical systems consists in performing linear
stability and bifurcation analysis complemented by the obtention of Lyapunov expo-
nents, a tool that allows to determine the regular or chaotic behavior of a system.
Full-extent analysis of dynamical systems by means of parameter spaces characterized
by Lyapunov exponents [9] constitutes a useful technique that allowed to unravel the
dynamical behavior of diverse nature systems such as physical [10], chemical [11], and
biological [9] among others.

Recently, the analysis of parameter spaces by means of periodicities turns out to
be more appropriate cause it provides not only the determination of whether or not
a system is regular but a deeper insight on the dynamical properties [12,13,14]
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Synchronization is a ubiquitous phenomenon in nature deserving the interest of
scientist of different branches, going from physics [15] to social sciences [16].

Synchronization in coupled maps has been widely studied in different contexts; for
instance, considering parameter mismatch and noise [17]; or giving prescribed syn-
chronized dynamics on globally coupled systems [18,19]; or the description of partial
[20] and anticipated synchronization [21].

This work is organized as follows: In Sect. 2, we point out the main features
of the consider system, namely, the coupled logistic maps; we also describe the cou-
pling conditions and the characterization of synchronous behavior. In Sect.3, we show
the obtained parameter spaces characterized by the periodicities using the coupling
strength and the parameter mismatch. Finally, in Sect. 4 we give the conclusions and
perspectives of this research.

2 Model

For our study we use as a model diffusively coupled logistic maps [6], given by:

x
(i)
n+1 = µ(i)x(i)n (1− x(i)n ) +

N∑
i,j
i6=j

βij(x
(j)
n − x(i)n ), (i, j = 1, ..., N) , (1)

where superscripts identify the oscillators, subscripts represent their evolution, βij

denotes the coupling strength, i.e., the action of oscillator j on oscillator i and x
(i)
n

is the dynamical variable of oscillator i and it is defined in [0, 1]. For computational
purposes we impose the conditions:

If xn ≥ 1 ⇒ xn = 1

If xn ≤ 0 ⇒ xn = 0

In order to characterize the synchronization, we introduce the synchrony factor σ
defined as:

σn = |x(2)n − x(1)n | , (2)

which allows us to identify different types of synchrony, such as:

– Complete synchronization when σn → 0.
– Anti-synchronization when σn → 1.
– Phase synchronization when σn oscillates with well-defined periods.

Several works have been devoted to synchronization on coupled maps using σn
[22], as the quantity to characterize synchronization; nevertheless, none consider the
situation in which σn oscillates periodically.

With the aim of featuring phase synchronization, we consider a system composed
of two coupled logistic maps:

x
(1)
n+1 = (µ(1) +

∆µ

2
) x(1)n (1− x(1)n ) + β(x(2)n − x(1)n )

x
(2)
n+1 = (µ(2) − ∆µ

2
) x(2)n (1− x(2)n ) + β(x(1)n − x(2)n ).

(3)

For this system, we obtain the parameter space, coupling strength β vs. parameter
mismatch ∆µ, exhibiting synchronous regions in terms of the periodicities of σn (σ-
periodicities).
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Fig. 1. (Color online) Parameter space in the plane (µ(1), µ(2)) in terms of synchrony factor
σ (color bar), after n = 105 time steps for two coupled logistic maps defined in the interval
3 ≤ µ(i) ≤ 4 and being β = 0.003.

3 Results

Using the model and the conditions described in Sect. 2, we study the synchronous
behavior of the system by means of the parameter space characterized by the syn-
chronization factor σ computed taking the mean over the last 500 values (see Fig. 1).
The diagram has been obtained after n = 105 time steps and considering a coupling
strength β = 0.003. The parameters µ(i), (i = 1, 2) are defined in the interval [3, 4];
thus, the maps can exhibit regular or chaotic behavior.

From Fig. 1 we choose the point µ(1) = µ(2) = 3.83 for which σ ≈ 0; it is notewor-
thy to mention that for this value of σ, the map behaves regularly with period 3 when
it is not coupled; on the other hand, when the maps are coupled, they synchronize
and the behavior is in general regular but with a change in their period. The latter
enables us to describe synchronization in the phase diagram β vs. ∆µ as shown in
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Fig. 2a, where the color code is based on the value of the synchronization factor σ.
A magnification of the central part were σ ≈ 0 is shown in Fig. 2b, (see also [23]).

From Fig. 2b, we observe clearly that for small coupling strength values, synchro-
nization is not achieved. For β ≈ 0, 002 the system completely synchronizes even of
the oscillators are different with a mismatch ∆µ ≈ 0.004. The region of complete
synchronization becomes narrower with the increase of the coupling strength, in op-
position to what usually happens with Arnold tongues. Complete synchronization is
possible until the coupling attains a value β ≈ 0.037.

3.1 Analysis of Periodicities

The analysis of Fig. 2a shows interesting findings such as the identification of a
region of complete synchronization and the presence of some symmetric regions that
exhibit constant mean values of σ. Nevertheless, the precedent information does not
tell us any information on the dynamics of the oscillators. In order to have a deeper
insight of what reflects those symmetric regions, we choose some points inside the
regions from which we obtain the evolution of the dynamic variables x(i) and σ as
shown in Figs. 3a–e and in Figs. 3f–j respectively.

From Figs. 3a-e we note that the signals are synchronized in phase and this fact
is reflected by the periodic behavior of illustrated in Figs. 3f-j. The latter indicates
us that these regions are linked to in-phase synchronous behavior and they deserve a
complementary study in terms of periodicities.

An exhaustive numerical computation of periodicities of Fig. 2 permits us to obtain
a new phase diagram (see Fig. 4) but now, in terms of σ-periodicities instead of σ
simply. The inspection of Fig. 4 shows us that the symmetric regions appearing in
Fig. 2, are also present in Fig. 4 but characterized by well-defined values of periodicity.
With the aim of having a better approach of the above mentioned regions, we identify
each of these by means of a rectangle and a capital letter. In Fig. 5, we magnify some
of these regions in order to see with more detail the involved periodicities. We can
point out some interesting features appearing in these regions, e.g., the almost perfect
symmetry both in their shapes and in their σ-periodicities values. It is interesting to
note that each region exhibits several values of σ-periodicity. Thus, the larger regions
of Fig. 4 show σ-periodicities 3, 6, 12, ...; in all the panels of Fig. 5 the σ-periodicities
are 5, 10, 20, .... The latter results is an indication of a periodic behavior that follows
a chaotic one.

In Fig. 6, we verify the exactness of the information obtained from Fig. 5 in which
concerns the σ-periodicities, i.e., we represent the time series corresponding to the
dynamic variables x(1) and x(2) that are clearly synchronized in phase (Figs. 6a–f).
Similarly, the evolution of σ is represented in Figs. 6g–l and the corresponding peri-
odicities coincide with those shown in Figs. 4 and 5.

The periodicities P of the synchrony factor σ (σ-periodicities) are computed by
determining how many time steps are necessary in the time series of σ for finding a
repetitive situation.

Even though, the analysis has been made for a situation in which the uncoupled
maps behave as periodic, we can also carry out numerical experiments for µ values of
the map corresponding to a chaotic behavior (µ = 3.78). The coupled maps once again
synchronize and as a consequence it is possible to find the corresponding σ-periodicity
P as shown in Fig. 7
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Fig. 2. (Color online) (a) Synchronization region in the plane coupling strength (β) vs.
parameter mismatch (∆µ), where µ(1) = µ(2) = 3.83. (b) Magnification of the central trian-
gular region, where σ ≈ 0 [23]. The color code for both is the same and is similar to that
used in Fig. 1

.
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Fig. 3. Time series of (a)–(e) variables x(1) (black) and x(2) (gray), and (f)–(j) synchrony
factor σ: (a) and (f): ∆µ = −1.151 × 10−6, β = 3.003 × 10−3, complete synchronization;
(b) and (g): ∆µ = −1.151 × 10−6, β = 3.641 × 10−2, complete synchronization; (c) and
(h): ∆µ = −7.025 × 10−2, β = 1.216 × 10−2, P = 20; (d) and (i): ∆µ = −1.838 × 10−2,
β = 3.226 × 10−2, P = 10; (e) and (j): ∆µ = −1.215 × 10−6, β = 3.240 × 10−2, P = 9.
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Fig. 4. (Color online) Phase diagram β vs. ∆µ in terms of σ-periodicities. Each color
indicates either the situation of non-synchronization (white), complete synchronization (red),
or the values of the periodicity. The color bar represents the main periodicities appearing in
the synchronization regions.

.

4 Conclusions and Perspectives

The main issue of this work is related to the finding of a new method to describe
synchronization in coupled maps. This method is based on the determination of peri-
odicities of the synchrony factor σ. These σ-periodicites allow us to identify not only
complete synchronization (stable value of σ ≈ 0) but also in-phase synchronization,
where the σ-periodicities is an induction of a synchronous behavior of the system. We
carried out extensive numerical computation in order to obtain a phase diagram (cou-
pling strength, β vs. parameter mismatch, ∆µ) based on the values of σ-periodicities.
This diagram contains information of the synchronous behavior in a wide range of
parameters. The inspection of the phase diagram allowed us to identify several regions
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Fig. 5. (Color online) Zoom of some of the regions shown in Fig. 4. It is remarkable the
symmetry both in their shapes and in their σ-periodicity values. As in Fig. 4, the color bar
represents the main periodicities appearing in the synchronization regions where each color
indicates either the situation of non-synchronization (white) or the σ-periodicity values. The
main periodicity values are 5, 10, 20 and 40.
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Fig. 6. Time series of (a)–(f) variables x(1) (black) and x(2) (gray), and (g)–(l) syn-
chrony factor σ: (a) and (g): ∆µ = 6.929 × 10−2, β = 1.318 × 10−2, P = 5; (b) and
(h): ∆µ = −6.991 × 10−2, β = 1.250 × 10−2, P = 10; (c) and (i): ∆µ = 8.362 × 10−2,
β = 6.784 × 10−3, P = 20; (d) and (j): ∆µ = −8.345 × 10−2, β = 6.877 × 10−3, P = 40; (e)
and (k): ∆µ = 1.879 × 10−2, β = 3.233 × 10−2, P = 80; (f) and (l): ∆µ = −1.881 × 10−2,
β = 3.232 × 10−2, P = 80.
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Fig. 7. (a) Time series for two coupled maps x(1) (black) and x(2) (gray) with the same value
of µ = 3.78 (chaotic one). (b) The time series of σ showing a periodical behavior P = 9. (c)
A time series for a logistic map with the same µ value corresponding to a chaotic region.

in which in-phase synchronization is possible. A remarkably aspect of these regions
are their symmetry both in shape and in σ-periodicity values.

Finally, these regions exhibit several σ-periodicities values, being the most com-
mon, the sequences 3, 6, 12, ... and 5, 10, 20, ..., which indicates that the periodic be-
havior observed in these regions followed a chaotic one.

This detailed characterization of the synchronization of two coupled maps might
be very useful in systems containing a lot number of maps for which it is possible to
consider distance-dependent coupling, and even time-varying coupling.
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