Asignatura:	TERMODINÁMICA
Sigla:	FIS 362
Área Curricular:	Termodinámica
Modalidad:	Semestral
Nivel semestral:	Sexto semestre, ciclo de profesionalización
Horas teóricas:	4 horas por semana en dos sesiones
Horas prácticas:	2 horas por semana en una sesión
Prerequisitos formales:	FIS 250, MAT 242
OBJETIVOS	

Proporcionar a los estudiantes las bases conceptuales, el desarrollo teórico y aplicaciones principales de los fenómenos térmicos. Se estudia la termodinámica tanto desde el punto de vista fenomenológico como formal introduciendo conceptos elementales de mecánica estadística.

CONTENIDO

CAPÍTULO I. Ley cero y primera ley de la termodinámica

Conceptos fundamentales.

Ley cero y temperatura.

Sistemas termodinámicos simples.

Trabajo.

Calor y la primera ley de la termodinámica.

Propagación del calor.

Gases ideales.

Teoría cinética de los gases.

CAPÍTULO II. Segunda y tercera leyes de la termodinámica

Maquinas térmicas y refrigeradores.

Segunda ley de la termodinámica.

Postulados de Clausius y Kelvin-Planck.

Reversibilidad e Irreversibilidad.

Ciclo de Carnot y escala Kelvin de temperatura.

Entropía.

Tercera ley de la termodinámica.

Substancias puras.

Ecuaciones de Maxwell.

CAPÍTULO III. Aplicaciones de la termodinámica

Aplicaciones a sistemas especiales.

Transiciones de fase.

Paramagnetismo.

Física de bajas temperaturas.

BIBLIOGRAFÍA

- M. W. Zemansky: Calor y Termodinámica, 1961
- F. W. Sears: Termodinámica, 1958
- F. Mandl: Física Estadística, 1979
- B. Pippard: The Elements of Classical Thermodynamics, 1964