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A comprehensive presentation of an approach to finite periodic systems is given. The general expressions
obtained here allow simple and precise calculations of various physical quantities characteristic of crystalline
systems. Transmission amplitudes througtell multichannelquantum systems are rigorously derived. Gen-
eral expressions for several physical quantities are entirely expressed in terms of single-cell amplitudes and a
new class of polynomialpy ,. Besides the general expressions, we study some superlattice properties such as
the band structure and its relation to the phase coherence phenomena, the level density and the Kronig-Penney
model as its continous espectrum limit. Band structure tailoring, optical multilayer systems, resonant energies
and functions, and channel-mixing effects in multichannel transport processes are also analyzed in the light of
this approach.
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[. INTRODUCTION acterizing open and bounded systems. In the present ap-
proach and in the traditional solid-state physics theory, the

The solid-state theory that has evolved into the presenwvay in which the periodicity and finiteness of the systems
condensed matter physics carries a burden of prequantic thate incorporated in the theory is handled differently and the
oretical tools to describe periodic systems. In the currengxtent and limitations of the theoretical predictions depen-
theory, the reciprocal space and its corresponding method#ent on how this problem is confronted. In the traditional
(appropriate and natural to deal with Miller indices anda@pproach** the translational invariance is assumed from
structural analysis of crystalline materialwere, so to say, the very beginning and leads to the widely accepted Bloch
customized for a quantum description of periodic systemsfunctionse™e"u,,  (r), where the periodic pat,, (r) re-
Simultaneously, the translational invariance and the ensuinmains practically unknown or approximately determined by
Bloch’s theorent, rigorously valid only forinfinite periodic  rather involved numerical calculations. This function is taken
systems, become the natural and obvious starting point tas a rigorous solution of the Schiinger equation, which is
deal with real periodic systems which, although macro-not true unless the size of the system is taken to be infinite.
scopic, ardinite. Despite the important results obtained andThis underlying assumption implies that the current theory
the great amount of interesting phenomena that have beestays in the continuous spectrum limit and draws one in a
explained so faf;® the theoretical analysis in the reciprocal very natural way to work and develop a theory in the recip-
space provides a rather involved and sometime obscure descal space. A number of well-established but approximate
scription of the physics of the crystalline systems. An alter-methods have been developed to basically evaluate disper-
native approach, which is much simpler and natural forsion relations at different symmetry points of the Brillouin
studying finite periodic systems, without any reference tozone. In the transfer-matrix approach on the other héod,
Bloch’s theorem or reciprocal spaces, was recentlycal) periodicity and finiteness, inherent to the theory, are
introduced® Further developments and details of this theoryfully introduced without any drawback, and a theory of finite
will be presented here. In this approach, which relies orperiodic systems is neatly built up on them. Universal ex-
simple algebraic methods and was envisioned to study sygressions for globah-cell physical quantities, valid for any
tems with an arbitrary number of cells, an arbitrary numberealization of the potential function, are rigorously and di-
of propagating modes and an arbitrary shape of single-cellrectly obtained in our theory. We believe that in some cases
potential, exact, and general expressions can be determindue transfer matrix approach will substitute with advantage
for quantities which are either impossible to calculate withinthe current models, while in other cases, but not in general,
the present theory or may require experimental input. an appropriate combination will work better.

This theory follows a procedure which is in some sense In the standard approaches to multilayer systems both the
similar to the one used in solving simple quantum mechanitransverse translational invariance and the one-dimensional
cal problems such as the square well potential, the harmoni@d D) one-channe{or propagating modeapproximations are
oscillator, etc. In these cases the energy eigenvalues and thegularly invoked. These convenient assumptions stand up,
eigenfunctions are directly obtained without any reference tavhereas channel mixings are negligible. Otherwise, it is not
reciprocal spaces or approximate methods. As will be seen ipossible to sustain the 1D one-channel assumption when a
this paper and forthcoming publications, an appropriate usesal multimode propagation process is present. A theory
of the transfer matrix properties allows one to study finitewhere a multichannel approach is possible is then required.
periodic systems and to rigorously deduce analytical andn general, even at low energies and for narrow systems a
general expressions for a number of physical quantities charrumber of propagating mode®pen physical channels
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might be present. In the scattering approach to electroniclass(with time reversal symmetry broken and, depending,
transport processes, each of the transverse nonevanescentot, on the spij most of the expressions derived in this
states in the leads define an open channel. For a 2D systemgpart will refer to this kind of system. However, in some cases
say, an electron gas in a GaAs layer with transverse width we will be more specific with the universality classes. For
and energye—the number oflelectron propagating modes the sake of simplicity we will discuss examples of the or-
is of the order of v\2m*E/#%~0.8n\E. Forw=8 nm thogonal class, i.e., spin-independent and time-reversal-
and Ex0.1 eV this number iN~2. We shall in general invariant systems.
conceive the physical channels in a wider sense. Hence, light The TFPS’s will be discussed in three parts. In the first
and heavy holes or any other propagating mode can be cofart, we will introduce the transfer-matrix method, establish
sidered as a concrete realization of a channel. general properties using the scattering amplitudes, and de-
In the theory of finite periodic systeniSFPS’9 discussed  gyce general expressions for the evaluation of a number of
here and in the forthcoming parts, the finiteness property Of)hysical quantities in open systems. In the second part we

real systems and the possibility of multichannel processeg;jji refer to bounded and quasibounded systems and the in-

are essential to the theory and they are explicitly built in. Iy o004 energy eigenvalues and eigenfunctions. In the third
this theory we use the more suitable transfer-matrix metho

hich. althouah | dqi i ¢ hani art we will apply the results obtained to the calculation of
which, although scarcely used in solving quantum mechaniy, . o o4 strycture for real systems, such as GaAs and AlAs,
cal problems, provides an extremely powerful technique

mathematically simple, and, from the point of view of the’[.aklng Into account the-e and enugleus Coulomb.mtera.c-.
physical results, fairly appealing and significant. t|ons,_the repulsive angular potential, and the spin-orbit in-

The possibility of easy derivations of general expression§eraCt'°n' L ,
to describe the physics of the whatecell system is an im- In Sec. I, of this _f|rst p_ar.tz we shall present an overview
portant advantage of this approach. Some highly remarkabl@f th'e tran;fer-matrlx deﬁmﬂon qnd recall the well-known
characteristics of these expressions are their simplicity anfflations with the scattering amplitudes. In Sec. |1 B, we de-
compactness. The fundamental properties of the quantum déve a general three-term recurrence relation, which is an
scription such as théunneling effectand phase coherence important piece of the theory, whose solutions are the matrix
phenomenare evident in their functional structure. Just to polynomial py . In Sec. Ill, new and general expressions
illustrate what we mean here, let us refer to theell for the scattering amplitudes and the associateell trans-
N-channel transmission amplitudg , obtained in Eq(27),  port quantities are derived. Closed and compact expressions
where for simplicity the subindeX has been dropped. This for an easy evaluation of the resonant energies and resonant
global quantity is a simple function of the one-cell transmis-functions of open systems are also presented. Since all these
siont (=ty 1) amplitude and certain well-defined polynomi- quantities are shown to depend on the polynonigls, we
alsp, (=pn,)- In that expressiort, carries information on  present in Sec. 1V, for completeness and self-consistency, an
the tunneling process while, on the phase coherence phe- outline of the solution of the three-term recurrence relation
nomena. In the 10one channél case,p, reduces to the obtained in Ref. 21. In Sec. V, 1D one channel and 3D mul-
well-known Chebyshev polynomial of the second kidg. tichannel examples are discussed.

In the theory of finite periodic systems, the polynomials To illustrate the application of the theory to one-channel
pn,n cOmprise the whole information of theomplicated periodic systems, we shall consider the typical square- and
phase interference processesiginating in the multiple re-  §-barrier potential chains. Various well-known properties
flections along the “periodic” system, and of the system’ssuch as the band structure, resonant tunneling probabilities,
sizeL (=nl. in the growing directiopreflected in the order transmission coefficients, resonant energies, and wave func-
of the polynomial. The multichannel polynomiats, , are  tions will be calculated. Level densities, including the inter-
interesting quantities not only from the point of view of the esting coherence-induced localization effect in open systems,
physics but also from that of the mathematics. Physical propwill also be disscused. The interesting and well-known band
erties that are strongly determined by quantum coherencgtructure “tailoring” and the familiar energy levels and sub-
and tunneling effects, such as the resonant transmission bbands in the gap regions are also nicely accounted for by
havior and the energy band structure, are thoroughly settleddding “impurities” or producing topological defects to the
out by the single-cell transfer matrix and the number of cellsfinite periodic systems. Concerning the multichannel sys-
n. It is worth mentioning that all the results in this theory aretems, and to exhibit the advantages of this formalism when
compatible and reduce, when taking appropriate limits, tadealing with channel mixings, we will finally include some
well-known physical properties and expressiéfis?In this  examples of two and three propagating modes through alter-
theory, even the popular and illustrative Kronig-Penfi€l)  nating thick GaAs layers and thin films af-repulsive or
model can be derived in a more natural and simple way. §-attractive centers, with interesting resonance effects arising

In this paper we shall refer mainly to multichannel time- from phase coherence, channels coupling, or coupling be-
reversal-invariant and -noninvariant systems with and withtween an open and an evanescent mode.
out spin-dependent interactions, i.e., to systems of the so- Since the principal results of this paper are equally valid
called orthogonal, symplectic, and unitary universalityfor electromagnetic systems, evaluation of optical transmis-
classes, named by the kind of matrix that diagonalizes thsion properties through optical multilayer heterostructures is
HamiltonianH, respectively?’ Since the most general or less also possible. The superluminal tunneling time through opti-
restrictive class of systems is those of the unitary universalitgal superlatticé$ or the nonlinear multilayer optical arrays
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WA } can be identified. Notice that all the possible physical states
7 > can be labeled by a channel index{n,,n,}=1,2, ... s\,

wheres is the number of spin projectiorisaken into account

Fig | Pereyra only when the interaction depends on the $@ind N is of

the order of kew)P 1, with D the system’s dimensionality
andkg the Fermi wave vector. From here on, the number of
propagating modes is taken in generaNassN. We can use
the set of function§¢;(x,y)} to express the total wave func-
tion as

FIG. 1. Particles moving through a 3D superlattice of lateral
dimensionsw, , wy, and cell length; feel a lateral confining hard-
wall potential Vo(X,y) and a periodic potentiap, at least as a
function of the growing coordinate

with alternating “dielectric constant$® in the “single-layer N
approximation” have been also successfully attacked. For the B
last case we shall calculate the transmission coefficients and \If(x,y,z)_zi: di(X,Y)i(2). ()
the optical band structure. )
Substituting in the Schdbinger equation, we obtain the fol-
Il. TRANSFER-MATRIX APPROACH lowing system of coupled equatiofi:

FOR MULTICHANNEL FINITE PERIODIC SYSTEMS ) N

d
A. Properties, definitions, and the scattering amplitudes —i(z)— (k%+ k%i)(pi(z)zz Kijej(2z), i=12,...N,
]

Transfer matrices and their properties were used in the
1950s as natural quantities to describe electronic spectra aRghere x = \2m(Vp— E)/%, k2,=2mE, /42, and the channel
transport processes through ordered and disordered linegpypling parameter
chains?*?®> More recently, multichannel-transfer-matrix ap-
proaches became familiar in the scattering theory of quantum om
wires2® Basically two types of transfer matrices are known: Ki =_2f BF (X, Y)Vp(X.y,2) $(x,y)dx dy.  (4)
the transfer matrixwhich we shall call of the first kingd h
which connectsvave functions and their derivatives at two I . .,
points or planes of the scattering regioand the transfer Although the contrlbutlon of t.he.so—called cIo;ed channels
matrix (of the second king which relates thatate vectors at (evanescgnt mod)asa_n, n pr|nC|pI_e, be tgkep Into account,
those points or planesTransfer matrices of the first kind W& Shall in general disregard their contribution.
were used by Jam&sand quite recurrently in 1D solid-state 10 détermine the transmission amplitudes framto zg
physics?® On the other hand, the matrices of the second kind” z +nlg, wherel is the "?”gth of a single cell, the stan-
were used by Luttingéf and Borland?® who denoted them c_iard procedure would require one to solve the coupled equa-
“transformation matrices.” Lately, matrices of this type have tions and match the solutions all the way fram to zg.
appeared somehow more frequently and came to be a@aere, with a suitable methoq, we only need to solve Fhe
called “transfer matrices.” Both types of transfer matrices Single-cell problem to describe most of the superlattice
can, of course, be related to each other by a simple transfoRNysical properties.
mation. In this paper we will be concerned with transfer Let ¢;,(z) and ¢;,(z) be theith-channel(with spin o)
matrices of the second kind relating state vectors. wave functions traveling to the right and left, respectively.

If we were dealing with an electronic transport processThe total wave functions in the left- and right-hand sides of
through a 3D “periodic” system(of lengthl=zz—z and the scattering regiofsee Fig. 2 can be written as
transverse cross sectionw,) connected to perfect leadsr
waveguidesof equal cross sectiofsee Fig. 1, the assumed R -
noninteracting charge carriers would feel a potential function 4’(21):21 ;::1 [Qis@io(Z1) T bigeis(Z1)]
containing at least a confining hard wall potent&(x,y)
and a periodic potentiaV/p(X,y,z), periodic at least as a
function of one coordinate—say, the coordinateSolving =(a,b)| _
the partial differential equation

N s

(5
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. . . . FIG. 3. One-dimensional finite periodic system of square barrier
FIG. 2. Left- and right-propagating wave functions at two points of heightV, and widthb,, separated by valleys of width,.
z, andz, of a potential region.

N s M MT=3,,
9(22)= 2 2 [Cio#io(Z) +dis9is(22)]

In O
. with 2,,= , 9)
©(2) 0 —ln
=(c,d)| - : (6) , o _ ,
©(Zy) wherely is theN X N identity matrix. In the absence of time

reversal invariance, the Hamiltonians for both spin-
Hependent and spin-independent interactions can be diago-
nalized by a unitary transformation; hence the system be-
Yongs to theunitary universality classin the presence of

where a,b,c, and d are N-dimensional coefficients. These
functions, in the state vector representation, are related wit
each other by a transfer matrix of the second kind defined b

c*(z) a*(z) time-reversal invariancgTRI), we distinguish the spin-
<f . 5,71 (f Y. (77  dependent case from the spin-independent one. For spin-
do(z,) be(zy) independent systems, of the so-calthogonal universal-

For our purposes it is useful to express the transfer matrix iri1ty class time-reversal invariance implies that=a” and
block noﬁati%n as P v=B*, while for spin-dependent systems, of themplectic

universality classTRI implies other requirements. For spin-

a B 1/2 particles, the transfer matrices have the struéture
M(ZZ!Z]_): 5)1 (8)
a B
wherea, B, vy, and § are SN XsN or just NXN complex M= KTB*k Ka*k)’

submatrices. In general, there are some constrictions between
the submatrices, B,v, and 8, which of course depend on 0 |
the physical properties and symmetries present in the sys- with k:( N)_ (10)
tem’s Hamiltonian. As mentioned above, the physical sys-
tems are especially distinguished by the presence or not of
time-reversal and spin-rotation symmetries. In each case, the The specific functional form of the transfer-matrix ele-
number of free parameters and the characteristics of thaents depends on the particular potential functions. For the
transfer matrix are determined by the symmetffeg. sake of illustration, let us consider here a periodic system of
While time reversal invariance and spin-dependent intersquare barriers of height, and widthb, separated by val-
actions(SDI's) may or may not be present, flux conservationleys of widthag, as shown in Fig. 3. The single-cell transfer
(FC) must always hold and the transfer matrices should fulimatrix, relating wave vectors at, saj, andz,, is the well-

fill the pseudounitarity conditioisee Appendix B known matrix(see Appendix A and Ref. 30
kogosti b i K MU
y e'“%cosh kby) —i Wsmr’(x 0) —i Wsmf{x 0) .
o (k24K e (k2=K?) ’ a1
+i Wsmt{ kbg) e "%cosh kbg) +i Tsmk{ kbg)

with k=+2mE/#% and k=+v2m(Vo—E)/A. This system is Although the explicit calculation of the transfer matrix for
time-reversal invariant and belongs to the orthogonal univeran arbitrary potential region may not be a simple task, it
sal class. Hencé=a* and y=g*. It is easy to verify that is still possible to establiskibased on very general trans-
this matrix also fulfills the FC requirement. fer-matrix properties many interesting results without any
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iyl TrM/2
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0.07 0.2 0.37 T
1 TrM)|2
n=7 (b 1
eV
_4 0.07 0.19 0.39
0.5
2
lbn FIG. 5. The Bargmann parametegs and y and the transfer-
ov matrix trace TiMy/2 as functions of the energy for the periodic

0.07 0.2 0.27 system in Fig. 3. The energy bands are emphasized in the energy
axis. The phasep is a monotonously increasing function of the
FIG. 4. In these figures the trace Nli,/2 is plotted together  energy, with an allowed energy band for each interval of length

with the transmission coefficients,|? for the periodic system in  The parameter, on the other hand, decreases monotonously. These
Fig. 3, withV,=0.23 eV,by=10 nm,a,=5 nm, andn=3,7in  two parameters define not only the appearance of resonant states
(a) and (b), respectively. In(@) we also have the single-cell trans- and bands but also the building up of gaps.
mission coefficienft|?. It is evident from these figures that the
Kramer condition| Tr My|< 2 determines the allowed and forbidden

\ extensively studied in Ref. 20. In this representation and for
energy regions.

1D systems of the orthogonal universality class, the transfer-

. - ) matrix trace reduces to
reference to their explicit functional form.

At this point we shall introduce a brief digression to refer TrMo=2 cos¢ coshy =2 Rea (13)
to one of the most important and relevant physical concepts 0 ’

of th_e crystalline_systems: the band structure, from a transfexgith ¢ andy being well-defined functions of the energy and
matrix point of view. It is well known that in order to deter- {he specific potential parameters. In Fig. 5 we plot the func-
mine the energy regi_ong of extended wave functipns Oone Cafions ¢ and y, together with the transfer-matrix trace
use Kramer’s conditiofl’ In the 1D one propagating mode T\ /2, The energy bands are indicated in the energy axis
approximation this condition is written 43r Mo|<2. Simi-  \ith bold lines. The phase is a monotonous increasing
lar relations, appropriately modified, work well for systems,ction of the energy, with an allowed energy band for each
with a Iarger number of propagatir!g m.odes..For the familialinteryal of lengthm. The parametey, on the other hand,
1D Kronig-Penney model shown in Fig. 3, i.e., for the se-gecreases monotonically. These two parameters define not
quence of square-barrier potentials mentioned before, thgyy the appearance of resonant states and bands but also the
single-cell transfer-matrix trace is building up of the gaps. Note that we can label the bands
with an index defined byy=1+(¢— ¢ modw)/ . It is im-
portant to make clear that, even though the band structure is
a consequence of and will emerge once the phase coherence
(2 K?) and fthe periodiclity c?ave been cfombined, the hsingf]Ie—geII
K= . : transfer matrix already contains information on this funda-
T ok Skag)sint(xby) |. 12 mental property.
The Bloch’s phas&g =kgl. and the Bargmann param-
The right-hand-side function is frequently quoted in the lit- eters are related by
erature as equal to cigl;, the cosine of the Bloch phase
kglc. In Figs. 4a) and 4b), TrMg,/2 is plotted together COsfg = COS¢ ,coshy, (14
with the transmission coefficients, referred to below. It is
evident from these figures that the Kramer conditionwith ¢,=¢ modm. A simple analysis of this equation and
|TrMo|<2 determines the band structure. In theories dethe energy dependence @f, and y (see Fig. % neatly ex-
signed for infinite periodic systems, the allowed energyplains the reappearance of bands and gaps with varying
bands are continuous regions of energy levels. Howeveryidth. It also shows that the Bloch pha8g, comprises the
from calculations of transmission coefficients for finite peri- behavior of the real compact and noncompact parameters
odic systems the bands contain a finite number of energgnd y, respectively. As these parameters vary, the Bloch
levels and the band structure manifests itself when the nunphase passes from a real valiadiowed bandg to an imagi-
ber of cellsn is of the order of 5. nary value(forbidden bang
Sometimes it may be convenient, but it is not essential for To describe tunneling and transport properties in terms of
this theory, to express the transfer matrices in the Bargtransmission amplitudes, it is important to recall the relation
mann’s representation, briefly mentioned in Appendix B andcbetween the transfer matriM and the scatterin® matrix.

TrMgp=2| cog kag)cosh{ kbg)
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B. n-cell transfer matrix and some basic relations

V(z)
a c=ta+r’d L )
, The multiplicative property of transfer matrices makes
them suitable quantities to describe systems whose length
b=ra+t’'d d grows. If we put together two identical cells of lendttin
D | : D and with a transfer matri each, the resulting system of

length ./n has the transfer matrivM,=MM=M?2. The
physical information of the enlarged system is fully con-
tained in the resulting transfer matrM,, while the func-
FIG. 6. The inccoming and outgoing amplitudes and the scattertional relation ofM, with the physical quantitieéscattering
ing amplitudes for particles coming in from the left- and right-hand amplitude$ remains unchanged. Applying the multiplicative
sides. property over and over, we can express the globat€ll)

. , ~_ transfer matrix as
For scattering processes like the one sketched in Fig. 6,

the coefficients, t, r’, andt’ are the reflection and trans- a B\" [a, Bn
mission amplitudes corresponding to incident particles on the Mp=M n:( 5) E( S
left- and right-hand sides, respectively. It is easy to verify 4 Yo On
(see, for example, Appendix)Cthat the transfer matrix of which is related to the corresponding scattering amplitudes

: (17)

the unitary universality class can be written as by
a B = rant an Bn () " Tt
Mu= T -1 -1 (15) = ’ -1 ’ -1 ' (18)
y 6 (tH " (') Yn  On —(tn) T (tn)

When time-reversal symmetry is conserved, one has to disy quite significant step in the transfer-matrix method is, pre-

tinguish spin-dependent from spin-independent systems, Fsely, the possibility of analytically determining the matrices

mentioned before. The TRI requirement for spin-independen& 5. etc., and hence, from E€18), to deduce analytical
systems implies’ =t" while for spin-dependent and TRI ,ynracsions : ’

, T 3 expressions for the globakcell N-channel physical quanti-
systemst’ =k't’k. Here the superscripl stands for the jies The subindei will be usually absent in the TM blocks
transpose. These global relatiofvalid independently of the 5,4 the one channel quantities, just for simplicity. For nu-

size of the system, number of cells, and the potential promerical evaluations it may be convenient to diagonaliizas
files) are part of the cornerstone of the transfer-matrixj yt and to write then-cell transfer matrix asJ AU
m(_athod and they provide the_ possibility o_f establ_lshlng 3However, by doing this one loses all the power of the
bridge between the mathematically well-defined objects: th ansfer-matrix method for analytical calculations and spoils

transfer matrices and the scattering amplitudes. the possibility of deriving new expressions for fundamental
Another important attribute of the transfer matrices thatphysical quantities.

makes them appropriate quantities to describe systems Of | ot s now consider some transfer-matrix properties and
finite but, in principle, arbitrary length is the multiplicative gerjve fundamental relations in this approach. In the follow-
property ing we will be concerned mainly with the unitary universal-
M (25,21) = M(2Z5,2,)M (25,21, (16) gﬁ l;:ilr?jzxvl\:lwiItlrzgs(f)enr“?;;rlm 4, but for an easy notation the

whereM(z;,z) is the transfer matrix relating state vectors at ~ Since
positionsz; andz;. This property and the possibility of re-
lating the matrix with the scattering amplitudes have been Mp=MM;_1, (19
broadly used; they constitute the principal ingredients of the;t is clear that
transfer-matrix approach to the quantum description of finite
periodic systems. an=aa, 1+ BYn_1 (20)

It is well known that, in general, the scattering and the
transfer matrices contain the whole information of the scatand similar ones fog,, v,, andd,, with ay= dy=I¢\ and
tering processes. Hence it is not surprising that based ofo=Y0o=0. Starting from these relations one can easily ob-
these quantities one could build a theory to describe thé&ain thematrix recurrence relation (MRR)
physics of systems whose geometry permits the definition of . 4
the corresponding transfer matrix. To exploit this method, it Bn=(a+BOB™")Bn-1t(By— BB "a)Bnr-2, (21)
is essential to improve the ability tanglyncally_ calculate nd a similar ones for,,, v,, and8,. All these relations
consequences and new results associated with the transigy 1hree-term recurrence relations with matrix coefficients

matrix and, hence, with the scattering amplitudes at any 4imensionNx N. If we define the matrix functions
point of the system. This is, in principle, possible and it is the

goal of the next section. We shall establish a general method p(1) _=p1B (22)
and deduce general formulas that can be applied directly to Nm-d m

determine physical quantities for specific finite periodicEq. (21) becomes the noncommutative polynomial recur-
systems. rence relation {CPRR
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Pﬂ,)n+§ip§\i|,)n—1+ mpy =0 t = t' (27)
" pnt —Pn-1
for n=1 and i=1,2. (23)  takes the form
— — t*
Here {=—(B 'aB+d), m=(B"aB—yB), {2 ty=——— (29)

=—(y 18y+a), and n,=(ay 16y—By) are the matrix t*U,—U,

coefficients. It is easy to see that the initial conditions argypich is an extremely simple function of the Chebyshev
p{’-1=0 andp{,=1y. Notice that in the one-channel case, polynomials of the second kindJ,(ag) and U,_;(ag)

{ and 7 becomea+ 6=TrM and da— yB=detM, respec-  (evaluatedat the real part ofx), and of the single-cell trans-
tively. Thus, forone-dimensionasystems the NCPRR is the mission amplitude. Using the identitwnunizzuﬁil— 1,
Chebyshev polynomial recurrence relation and, at the sam¢ is easy to show that the transmission coefficidht

time, becomes the characteristic polynomial of th&2  =|t,|? can be written &%
transfer matrix. In the multichannel case, E83) contains
noncommutative factors. B T
By solving the matrix recurrence relation it is possible to T”_T_ Uﬁ L(1-T) ' (29)

extend the transport analysis to a multichannel description.

As was shown in Ref. 21 and will be outlined in Sec. IV andWith an evident resonant behavior. Hée: t|? is the single-

Appendix E, the matrix recurrence relations can be solve@ell transmission coefficient. The transmission resonances

almost straightforwardly. Before continuing with this outline, 9¢Cur precisely when the polynomial, , becomes zero.

let us assume that the polynomigis, , are known and Therefore thevth resonant energl, , is the solution of

hence proceed to derive the superlattice scattering ampli- var

tudes and relevant physical quantities. (aR)V=COS?, (30
From the mathematical point of view, the generalized re-

currence relations have some special implications which gavith v=1,2,3 ... n—1. The indexu labels the bands, as

beyond the purpose of this paper and will be discussed elsgliscussed above, and labels the intraband stateShese

where in connection with the matrix representation of generfundamental quantities cannot be determined with the cur-

alized orthogonal polynomials and noncommutative algefent solid state theory but they can be with the present ap-

bras, similar to those discussed recently by Gelfandl3! proach Although it is not clear that the actual experimental
precision may allow one to discriminate the intraband energy

states, we expect that for bounded finite periodic systems it

lll. GENERAL FORMULAS FOR PHYSICAL QUANTITIES will be possible to observe the fine energy structure using
IN MULTICHANNEL PERIODIC SYSTEMS optical excitation experiments. This could have interesting

: consequences in the applied physics field. In Sec. V we will
Even though we d_o notyet know what the polynomiajs discuss some simple examples. Notice that, according to Eq.
are, we assume their existence and deduce general eXpresy) each energy band contains, as often stated without

sion for the scattering amplitudes, the energy eigenvalueg, oot in the textbooks, the same number of resonant energies
the eigenfunctions, and some other transport properties is the number of confining wells.

terms of the polynomials. Using Eq0)—(22), it is easy to Before going ahead and presenting new expressions for
obtain other physical quantities, let us apply the previous equations
(29) and (30) to the sequence of square-barrier potentials

ann=Pnn— Y T8YPNn-1, (24)  formed in the conduction band of the superlattice

(GaAs/AlGaAs}) shown in Fig. 1. For reasons of simplicity
which together with Eq(18) permits us to write the global let us consider the 1D one-channel approximation. In Fig. 7,
multichannel transmission and reflection amplitudes as we present a series of graphs of the transmission coefficient
T, as a function of the particle’s ener@yand the number of
_ _ —1g 3t7-1 cellsn. It is evident that by increasing, the band structure
tun=[Pun=Prn-aly 2071 @9 gradually builds up. The )z;im of theqsequence of graphs in
. . Fig. 7 is to illustrate the formation of the band structure as
'nn= [P = (B7"@B)Pnn-1] " ¥Pnn-1- (260 the finite periodic system grows, for fixed single-cell length
) ) _ I.=ap+bg. One can observe the resonance splitting process.
These interesting results show that tiheell scattering am-  Wwe can also observe that farof order 5 the band structure
plitudes can be expressed entirely in terms of single-celht low energies is reasonably well defined.
transfer-matrix blocksor single-cell transmission and reflec-  Especially simple, in its functional structure, are the glo-
tion amplitudesr, t, r’, andt’) and the polynomialpy . bal Landauer multichannel resistance amplitudléﬁ'n
For time-reversal-invariant and spin-independent systemssr n(tN,n)il and Ry ,=—(tg n)flr,\,,n. These quantities,
tyn is just the transpose df ,, and y=B*, é=a*. For in terms of the ponnomiaIsN,r’,, are just
spin-dependent systems’'=k't'k and y=k'p*k, & . )
=kTa*k. The previous relations are simple and of general Ryn=Rn1PNn-1:  Rnn=RniPNnn-1-
validity at the same time. In the particular, but very muchHere, the tunneling and interference phenomena appear
used 1D one-channel case, the transmission amplitude  nicely factorized.
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FIG. 8. The wave function at any poiatin the j+1 cell (with
j=0,1,2 ... ,n—1) of an arbitraryn-cell system can be determined
using the transfer matriM (z;,z) for anyzy<zy<z,=2z,+I. and
the relationg44)—(47). Since the wave vector atis related to the

1 n=5 wave vector ar, by the transfer matriM (z,z,), we can obtain this
matrix either asM(z;,z,) followed by M(z,z;) or asM(z;,2o)

0 followed by M(z,z;) as depicted in the lower part of this figure.

0

1 n= 10 complicate the calculation of other physical quantities. In the
transfer-matrix theory the wave functions of finite periodic
systems can be obtained in a very simple way. From the

0 o1 0.z 0.3 eV definition of the transfer matrix, we known that once the
) ’ ’ single-cell problem has been solvfice., once the transfer
FIG. 7. The metamorphosis of the transmission coefficleras ~ matrix M(zq,zp), for any zoy<z|<z;=2z,+I. has been de-

a function of the particle’s enerdy and the number of cells. The  termined one is able to evaluate the wave function at any
band structure is built up as the number of cefisncreases. The other pointz=z;+jl . within the j+1 cell of the periodic

formation of bands is accompanied by a resonance splitting procesgystem or superlatticevith j=0,1,2 ... ,n—1: see Fig. &
Notice that fom of the order of 5 the band structure at low energies |, fact. the state vectors af, andz are related by
is reasonably well defined. '

o . N a o(z!
A quantity often used in the transport theory is the Land- (a‘(f(z)) :<aJ i ( O(f( 0)) , (33
auer multichannel conductance matiG=ty(rry) bje(2z) Vi i)\ bop(zf)
which for then-cell system becomes :
with
t _
Gnin= ! Gn1 . ) : (31 @ =pj—y léypj,l, (34)
" Pnn-1 T\PNpn-1 .
. Bi=B "Pj-1, (35
In the one-channel case, thecell conductance is just
8=p;— B tappj-1, (36)
1
n:(Un,l)zG (32 Yi=v 'pj-1. (37

In the same way, the state vectorzas related with the state

The zeros of the polynomial determine both the points ofector at the end of the superlattice, where only the transmit-
divergence ofG, and the zeros of the resistanBg. They  ted component must be considered.
also determine the resonant energy eigenvaliijes as well For an open system, as the one shown in Fig. 8, the right-
as the resonances of the global transmission coeffidignt  side propagating state vector zis

So far, we have given a number of nontrivial but ex-
tremely appealing relationg.he rrcell Landauer resistance R . Y
amplitude is just the product of the one-cell Landauer resis- ?(2)=o(zy)| @;— B =
tance amplitude R and the polynomia)_p. The polynomial (Pn=B " afBpn-1)
pn,n has the information on the number of layems,on the  and the left-side propagating state vector &
number of channeld); and, more importantly, on the com-
plex but precise interference phenomena. - -, Y pnos

Another significant physical quantity to describe periodic ?(2)=p(zp) P )
systems is the superlattice wave function. In the standard (Pn= B "afpn-1
theory of infinite periodic systems the Bloch’s function is Evaluating these state vectors&y ,, we have the corre-
taken, with no further reflection, ake natural and obvious sponding resonant states. In the 1D one-channel case the
wave function. However, this is not quite correct for finite matrix elementse;,B;, ... are simple functions of the
systems; the illusion of having a wave function with the Chebyshev polynomials, as can be inferred from Eg$)
apparent simplicity of Bloch’'s structure may considerablyand (34)—(37). These matrix elements, together with Egs.

) . (39

Y~ 9]

) . (39
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(38) and(39), give the wave functions. In Sec. V, the wave We show, in Appendix E 2, that the matrix polynomials sat-
functions and resonant functions for a particular examplasfying the matrix recurrence relation are
will be evaluated and plotted. These and the other relations .
already presented in this section are some of the general i,
expressions obtained in this theory. In the subsequent parts pNyn:ng Z’o PNk 1On-k  for n<2N (47
we will extend this approach to describe the physics of
bounded and quasibounded systems and real semiconducto?®d

As mentioned in the Introduction, a significant character- N1 K
istic of the global or superlattice physical quantities resides .
in their functional structure, expressed entirely in terms of PN.n= go ;0 PNiGk-10n-k  for n=2N. (48
the corresponding single-cell quantities and the polynomials o ) )
Pn.m- Itis clear then that in order to evaluate these quantitie$iere the coefficients;, g, are the symmetric functions

1

we first need to determine the polynomiglg . This will ON
be done in the next section. Keep in mind that in the 1D case _ i _
. : i=(— NN N, =1, 49
we already found thap, ,, is precisely a Chebyshev polyno- 9;=( |1<|2§f..<|j 117 9o (49)
mial of the second kindJJ,;,.
and
IV. POLYNOMIALS Py, 2N ) 2N+n-1
_ 1
We shall now briefly refer to the solutions of the recur- qn—; 2N I (50
rence relations. In the 1D one-channel casep, y, and§ H (Ni—X))
are complex numbers, and the recurrence relationg fdaor I7
dn) andp;, reduce to the Chebyshev's recurrence relation It is obvious from these results that, in order to obtain
Pnt Q1P 1+ Pr_a=0, (40) a polynomial Pn,n, ONe hasf to first determ.ine the ini.tial
_ 2N—1 polynomialspy,, which can be obtained by using
with p_,=0, pp=1, and the matrix recurrence relation. Notice also that for a given
gi=—TrM. (41) number of channeld\<n/2, we have to evaluate the sum
2N-1
Although the Chebyshev polynomials and the generating _ E c
functions method are well known, we shall recall them in Pn.n= Py kPN
Appendix E1 to show the notation employed and to intro-
duce the procedure used in the most general case. Using the k
eigenvalue representation, i.e., the eigenvalugandX, of with ck‘nzqn_kz Ok—1> (51)
=)

the 2x 2 transfer matrix, the Chebyshev polynomial of the

second kind can be written as where the scalars , are the only quantities which depend

ADFL_ N+l on the size of the systemn=nl,.
M 2

Ph= _ (42) Based on these results we now consider some simple re-
! alizations, which when applied to multichannel transmission
In Bargmann's representation, the unit-cell amplitudes coefficients define some useful relations and titamsition
and the eigenvalues, , \, for a time-reversal-invariant sys- Propabilities
tem can be written, respectively, as
A. One propagating mode
t=ei(bu— ) 1 (43) For N=1 andn cells, Eq.(47) reduces to
coshy’
2 n+1
r:e_Zid)utanth (44) pl,n:CO,n_Cl,nglqu,n:qn:;l zl—v (52
~ IT =)
\1,=C0g p,— ,)coshy + [ cog ¢, — ¢,)coshy]*— 1. J#i
45 L . .
49 which is precisely the well-known Chebyshev polynomial
For N=2, we have the MRR U,(trM/2) of the second kind given in E@¢42).
PNn=~¢PNn-1" 7PN,n-2; (46) B. Two propagating modes

with {=— (B *aB+ 8) andy=(5B8"'aB—yp). Thisis an ForN=2 andn=4, the 2x 2 matrix polynomialsp, , are
interesting and important problem. Solving this relation, wedetermined from

can expect a multichannel description of the transport pro-

cesses in finite periodic systems. Even though the problem p,,=conlo—C1nl+Con(LP— 1) —C3n(L3—{n— 1),
might seem rather complicated, it is nevertheless softiile. (53

205120-9
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with ¢ and 7 the coefficients of the matrix recurrence rela- A. One-channel systems

tion. Once the matrices, {*~ 7, and{°~ {7 — n{ are cal- For the purpose of discussing general qualitative proper-
culated, all we need is to evaluate the coefficientsfor the  (jes with no reference to any particular potential function,
corresponding number of cells. For systems with o e wil first look into the transmission coefficients in a 1D
propagating modes, the matricpg,, play the same role as gystem as functions of the Bargmann paramegesnd .

the Chebyshev polynomials in the case of one propagatingye will then use the general results of Sec. Il to evaluate
mode. The matrix polynomials are, however, more compl&transport properties for specific 1-D systems. The physical
and contain abundant information on the rather complicateghroperties of interest that will be considered here include the

multichannel transport processes. band structure building process mentioned above, the band
structure tailoring, the resonant energies and wave functions,
C. Transition probabilities and channel mixing the level density, and the Kronig-Penney model. In the last

part of this subsection, we shall also consider an optical

The transmission amplitude matrices in E@5) and(26) multilayer system

depending on the polynomiajs, ,, are loaded with informa-
tion and open up the possibility of calculating quantities such 1 gand structure as a general property of periodic systems

as channeltransition probabilities, whose amplitudes are ) ] ) )
given by the transmission matrix elemerts;=(t,); for In general we think of transfer matrices as associated with

i . In principle, these quantities provide information on theSOmMe specific system. It is possible, however, to think of
channel mixing phenomena. An incoming particle in it transfer matrices expressed in terms of nonspecific and rather

propagating mode might come out from the scatterer systerﬂe”eral parameters, such as the Bargmann parameters men-
in the ith propagating mode. These types of processes afiPned before. Using these parameters we can analyze the
induced by channel coupling interactions, expected whenP€havior of some functions appearing in the universal ex-
ever the channel coupling parametéts, for i #j, are dif- pressions obtam‘ed SO far and deduce. universal p_ro_pemes re-
ferent from zero. The transmission probabilfiy, ; (or just lated to any periodic systems. For this purpose it is conve-
Tai)» from channef on the left-to channei on the right- nient to plot the physical quantities as functions of the free
hand side. is obtained from parameters. The most general {@he-channgltransfer ma-

’ trix of the orthogonal class contains three free paraméfers,
only two of them being relevant to the physical quantities

— 2_ _ -1 T1—11..|2 . .
Tn,ij_|th,ii| =[{[Pnn—Prn-1(B""aB)'] }u| ' (54) considered here. In Bargmann'’s representation we have
) o o . 1 o1
Being able to calculate these transmission probabilities, it is t=gl(u=%) =e¢ ) (57
coshy coshy

possible to evaluate other quantities as interesting as the total
transmission probabilityTy,; (or just T,;) to channeli,

which regardless of the incoming chanipé$ given by 91=Cos hy— ¢, ) COShy=cosgcoshy, (58)
and
N
Toi= 2, [tanijl® (55) X1 ,=Ccospcoshy * \[(cospcoshy)?—1. (59)
=1

The single-cell Landauer conductanc&=sinh 2y and
A quantity where the channel information disappears, and ishe single-cell transmission probabilityT =cosh 2y do not
certainly much easier to measure, is the well-known conducdepend on the phas#; hence, they are monotonic functions
tance or total transmission probability, through then-cell  of y as can be seen in Fig(&). For y varying from 0 to

system. This is defined as infinity, T decreases monotonously from 1 to 0, wiilgyoes
from infinity to zero. If we plot these quantities as functions
N N of the energysee Fig. 1(a) below], they will increase as the
Gn=To=Trtnthn=2 Tni= 2 |tunijl2  (56)  energy grows sincg decreases with the energy.
=1 hi=1 The n-cell conductances,=G/(p,_;)? and then -cell

transmission coefficient,,=T/[T— pﬁ_l(l—T)] depend on

We are now ready to calculate all these quantities anghe phasep through the polynomialp,_, which, as men-
discuss the behavior of the transmission-reflection probabilitioned before, carry information on the periodic nature of the
ties and other interesting superlattice properties for both arsystem and on the phase interference phenomena. The ap-
bitrary and specific potential functions. pearance of a resonant band struct[see Fig. )] is a
universal effect independent of the specific potential shape.
The band and gap widths are given byMf2. In order to
understand the role of the polynomial, we plot the nine-

In the first part of this section we will apply our approach cell transmission probability g together with the Chebyshev
to several examples of one-channel periodic systems and polynomialpg_ 1, for a fixed y in Fig. 9b). The Chebyshev
the second part to simple periodic systems of two and threpolynomial p,,_;, evaluated atg=Tr M/2, determines not
propagating modes. only the position and bandwidths, it determines also the po-

V. ILLUSTRATIVE FINITE PERIODIC SYSTEMS
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d:2 a) 1.2 G a)
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FIG. 10. The transmission coefficients for a periodic system of
Ts(b,x) S-barrier potentials, separated consecutively by a distapcplot-
ted as functions of the Bargmann paramegeand the incoming
particle’s energyE. The bandwidths increase with the energy, as
corresponds to the monotonous grow of the phésevith the
energy(see Fig. 5.

sition of the tunneling resonances. Remember thasatis-
fies recurrence relations similar to thosepgf ;. This fact is
especially interesting in relation to multichannel systems. To
conclude this part we plot in Fig.(® the global four-cell
transmission coefficient (¢, xy) and the contour graph for
Tg(¢,x) (here the black regions correspond to lower trans-
mission coefficients both as functions o and y. In these
FIG. 9. Various physical quantities plotted as functions of thefigures the previously discussed behavior is evident: varying
Bargr,“af‘zn parameter¢a) The single-cell Landauer conductance 4 \ye generate the resonant structure while varyirtge gap
G=sinh "y and the single-cell transmission probabilty 54 the allowed energy bands are distinguished very clearly.
=cosh %y are monotonous functions gf. (b) The nine-cell trans- In terms of the free parametegs and y, the band structure

mission coefficientTq together with the Chebyshev polynomial iodi titi f the sinale-band behavi
pg—41 and the transfer matrix trace W/2, are plotted as functions fappears as a periodic repetition of (ne singie-band behavior,

of the phasep for a fixed . From these figures and the bahavior of 1€ Tn(¢,x)=Tn(¢+2m,x). If, instead, we plot these
the transmission coefficients (o), it is evident that the responsible duantities as functions of the energy and the potential param-
of the band structure and the resonant behavior is the phase coh&ters, the bandwidths will be different at different energy
ence phenomena. regions(see Fig. 10 beloyw
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2. Transmission through squgre- and-barrier potential 1.2 G (@)
superlattices
Let us now consider two specific and well known 1D 0.9 T
potential functions: thequare and §-barrier potentials. For
X . . 0.6
S barriers of strengtlv,, separated consecutively by a dis- X
tanceag, the Bargmann parametegsand ¢ are 0.3
VO 1/2
x=cosh'}{ 1+ >E (60) 0.1 0.2 038 0.4 E(eV)
and
\
V2m.E A L. \
— —1
= —tan —. 1
¢ PR ta >E (61 T,

Using these parameters, we can easily evaluate the transmis- 0.2
sion coefficients shown in Fig. 10. Their remarkable qualita-

tive similarity with the corresponding coefficients for the ar- 0.2
bitrary and nonspecific periodic system in Fig. 9 is evident.
The transmission coefficients are now plotted as functions of . EeV)
the energyE and the parametey (which also depends on the
energy. As suggested before and can be seen in Figa)10

the parametey is a monotonous decreasing function of the X 0.03 b)
energy, whileT andG increase.
For square barriers with heighfy and widthb, separated T(E,y)
by potential wells of thicknesa,, the Bargmann parameters X
x and ¢=¢,— ¢, are(see Appendix B ip
2 * 1/2
_ 1 Vo . \/zmb(f_vo))
x=cosh | 1+ e(e_vo)oml?( z 0.8
(62)
0.4
and
- 0
v2my e ag 0.04 0.08 0.12 E(eV)
=% |1h,
0 FIG. 11. The transmission coefficients for a periodic system of
2e—v, }-( M) square barriers with height, and widthb,, separated by potential
+tan * tan . (63 wells of widthay, are plotted as functions of the Bargmann param-
Ve(e—vo) h etery and the incoming particle’s enerdy The behavior is quali-

tatively similar as for theS-barrier potential and as for the arbitrary

* * - .
Here,m; andmj; are the effective masses in the valley and , generic case plotted in Fig. 8.

barrier, respectivel§® e= EbS andvo=Vob§. As mentioned
before, it is not necessary to use the Bargmann’s representt§- worth emphasizing that the periodicity and finiteness are
tion, unless one feels it convenient or one is interested ifully incorporated in the theory through simple and precise
analyzing generic properties as has been done in the previofignctional dependence of the physical quantities upon the
subsection. Using these functions and the superlattice formgrolynomialsp,. It is also worth emphasizing that all we

las given above, we can explore physical properties such d¥€€d in order to evaluate an important number of relevant
the band structure, the resonant energies, the resonant supgylPeriatiice physical quantities is to determine, with the

lattice functions, the density of states, the superlattice tunnef—"gh‘ta.St pgszlbfle pretcrzlls%n, t:e tsmgile—ce_ll ttrﬁnsfer matr(;x. As
ing time, the peak to valley ratios, etc. mentioned before, the band structure in the one-mode ap-

In Fig. 11, the same quantities as in Figs. 9 and 10 bufrrommatlon is easily obtained by plotting the transfer-matrix

) ) - “frace
now for square-barrier chains are plotted. The qualitative

similarities are also evident. The formation of resonant bands Tr M= 2 cos¢ coshy.

with higher transmission probabilities at certain energies ither quantities will be considered in the next subsection.
definitely a phase coherence effect. At low energies the van-

ishing of the transmission probability in the gap regions is a 3- Resonant energies and resonant wave functions, level density,
consequence of the phase interference phenomena and the and the KP model

tunneling effect. This band effect becomes much more pro- Here we will present some specific results for the resonant
nounced as the number of celfs,increases. At this point it energies and resonant states in the transport process through
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} t bt
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FIG. 12. The level density in the first subband of a finite and an
infinite (Kronig-Penney GaAs (Al sGa, /As/GaAs) superlattice
with a=100 nm,b=30 nm, andV,=0.23 eV. The discrete en-
ergy spectrum plotted fan=9 andn=50 approaches the continu-
ous spectrum of the Kronig-Penney model whmen . Wrg(2)* E=0.18 eV d)
. . . . n=14
an open square-barrier superlattice, as the one shown in Fig.
3. Eigenvalues and eigenfunctions will be discussed in the I = 130 nm
sequel(part Il) of this theory. As mentioned above, thh
resonant energye, , is obtained by solving the implicit % 390 780 1170 nl
equation W3, 5(2) E = 0.238 eV €)
v
(ag),=COS -,
with »=1,2,...n—1,
. . i E=0.27eV
where ag is the real part ofx and (aR), is the vth zero of V201 ¢ D
the Chebyshev polynomial. The index labels the bands,
and the indexv labels the intraband energy resonances, pe-
culiar to periodic systems and entirely determined by phase
coherence. In the transfer-matrlx approach the aIIowed_gn— . 390 780 1170 L)
ergy bands are those energies which satisfy the condition
cos¢ coshy = |ag| < 1. For then-cell square-barrier sys- FIG. 13. Extended, localized, and resonant wave functions for
tem, whose transfer matrix is calculated in the Appendix A,independent electrons moving along a superlatice like the one
the resonant energy equation becomes shown here and for the energy values indicated with an arrow in the

transmission coefficient. Ifc) and(e) we have the resonant wave
—q; . ) v functions¢,, , obtained by evaluating E¢75) at resonant energies
cosk,agcoshq,bo— Tsm k,aosinhq,by= 003?, E,.., in the second and third subbands, obtained from(E4). The
WA (64) number of oscilation of the envelope corresponds to the indéx
(d) we have a localized wave function obtained by evaluating Eq.
with kiz 2m} EM’V/ﬁ2 and q§:2mg (Vo— EM‘V)/hZ, Each (75 for an energy in the gap. Iff) the wave function is evaluated
of the energy bands contains the same number of resona@tan arbitrary energy in the third allowed energy band.

energies as the number of confining wells, in this case, is important to notice that the wave function depends on

n—1.In Fig. 12, some of these energies and the associatefls \arious potential parameters, the particle’s enggand
level densities are plotted for different values rofNotice the total number of cellsp. Notice also that while &2

that the level density behavior as a functionrofends rap- | o coordinate can take values between 0 antl,

. . Icy .

idly to that of the Kronig-Penney mod&although the con-  \yic 7 is in the first cell it coincides withz), so that

tinuous spectrum limit is only reached when-«, . v oxn ]
For TRI scattering systems like the one shown in Fig. 8,¥ (Zo.E)= ¢ (20)(1—B;/ay), since forj=0, ay=1 and

2 2

the wave function at is given by Bo=0. It is evident that evaluating the functiok(z,E) at
the resonant energiés, , we get the corresponding resonant
* function
(2.E)=6(2h)| a7 — (] + )
Z,E)=¢(zp)| aj+ B} —(aj +B; o | v, (2)=Y(zE,,). (66)
In Figs. 13c)-13(f) we plot the wave function along the
with j=0,1,...n—1. (65  superlattice GaAAIGaAs/GaAs (Ref. 12 at four different
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energies indicated with arrows in the transmission coeffi-and

cients in Fig. 18a). While in Figs. 13c) and 13e), the func- _

tions| ¥, ,(2)|? correspond to the third resonant energies in ediki 0 w; 0
the second ¥=2) and third ¢=3) energy bandsgin these Wi= 0 edk] | w* )’
cases the resonant bound-state functions are modulated by an

oscillating envelope function withv+21 minima, in Fig. as the valley-impurity transfer matrix. For a chain with a few
13(d) the wave function is evaluated for an energy in the gagmpurities, «, and 8,, can easily be calculated using for each
between the second and third bands. In Figf)lthe wave of the periodic sectors the already known expression
function is plotted for an arbitrary energy (#E,, ,) inside

a band. In the last case we have an extended wave function @p =Pn,— pnl,l(/a’_laﬂ), (69
with a very complicated behavior along the superlattice. At

z=0 andz=nl, the resonant wave functions are different Which in the one-channel limit is just

from zero, because they describe not only the extended but

also the transmitted states, unless the energy lies in a gap n = Pn, = Pn_, @, (70)
region and the probability of finding the particles at the ends . .

of the system is different from zero. This will, of course, WNerep,, is the Chebyshev polynomial of order evaluated
change for bounded systems. The same happens with ti#& Re). In the particular case of onlgneimpurity located,
function |W,|? in Fig. 12f), wherex=2. In Fig. 13d), the  say, at the center of the chaiwhich meansn;=n,), we
behavior of the wave function in the gap is not only compat-have

ible with the well-known vanishing of the transmission co-

efficient, it shows also a localization effect induced by the = an Wian + Bo Wi By == (tp) %, (7D
phase coherence, which is an appealing result.

(68)

o . In order to evaluate some physical quantities and to ob-
4. Band structure tailoring: Levels and bands in the gaps  serve the impurity effects on a specific band structure, let us

One of the most significant and interesting properties OponS|de_r again a sq_uare—barrler superlattice like the one
periodic systems, in general, and of multilayer superlatticesShown in Fig. 14a) with a;=2 nm, by=10 nm, andVy
in particular, is the possibility of tailoring their band struc- =0.23 eV. For this system, having a valley impurity at the
ture. Pronounced macroscopic effects, such as the increase@tnter of the superlattice ama= 10 barriers, we plot in Figs.
the electric conductivity of real semiconductdmntaining ~ 140)—14(f) the total transmission coefficient for different
defects and different types of impurity atomsest on the Values of the impurity widttag =z a,. Whenz <1, the im-
appearance of extra energy levels in the gaps of ideal semiurity valley width is narrower thara, and corresponds,
conductors. The superlattices become in this sense quite fualitatively, to a negative differenc&Z<0 between the
tractive because of the possibility of modifying their period-impurity and the host core charge numbéagceptors of
|C|ty by “inserting" at will extra energy levels in the subband eleCtr0n$ In the left-hand side COlUmn, the transmission co-
gaps. Different types of topological defects, referred to heréfficients are plotted foz;=0.9,0.8...,0.5. As expected
for the sake of simplicity as “impurities,” can effectively be WhenAZ<O0, an energy level separates from the upper band
created in these heterostructures by changing the védy  edges and moves towards the upper bands dsparts from
rier), depth(heighd, or width of certain layers. As a conse- 1. It is interesting to notice that the resonances in the bands
quence, the band structure is modified and the resonant peakke strongly modified. When the energy level approaches the
move to new positions. Using the method and formulas prenext upper band a new energy level separates from the op-
sented here, it is rather simple to determine these kind dposite side of that band. This kind ehergy-level repulsion
effects on the band structure and, especially, on the impurityandband crossingare interesting and novel effects that can
level position in the band gaps. To illustrate this, we shallclearly be seen in this example. For the energy level appear-
considemneandtwo substitutional “valley impurities”(with ~ ing between the second and third bands, the band-crossing
valley widthsay;) immersed in an otherwise periodic square- €ffect occurs whemz;~0.5. Similarly, for wider ¢>1) im-
barrier or-barrier chain. In our examples, the valley impu- purity valleys the behavior corresponds to donors of elec-
rities are produced by varying the well’s width such that thetrons withAZ>0. Asz; departs from 1 an energy level sepa-
impurity width isag;= z:a, with z,# 1. We can also vary the rates from the lower band edge and moves towards lower
valley depth. This implies a differemtave number kat the ~ energies ag; increases. It is obvious that by adjusting the
impurity layer. Other changes of local-potential parametergarameter; we can place the impurity level at any desired
are also possible. position.

In general, if we haves valley impurities in a chain of Increasing the number of impurities, but keeping constant
cells, the whole superlattice transfer matrix will be given bytheir separation, a second-order superlattice is built up and
the coherence phenomena manifests, producing another in-
teresting impurity effect in the band structure. The single

Mn:MnlwianZ.“MnsWisMns+ : :
resonances in the gaps split and narrow bands appear, pre-

1

s+1 cisely where the single peaks were at before, with as many
with n= Z nj, (67) resonances as impurities contalr_1ed in the superlattice. To _|I-
=1 lustrate this behavior, we consider the systems shown in
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z; < 1.0 i a) Figs. 1%a) and 1%b), with one- and two-valley impurities,

respectively. In the left-hand side column the transmission

coefficients are shown for the one-impurity system, while in

‘ ‘ ‘ ‘ ‘ the right-hand side column, the transmission coefficients cor-

0.1 200 400 800 1000 nm responds to the system with two impurities. By adjusting the
impurity valley width and enlarging the superlattice to in-
crease the number of impurities, narrow bands can also be

1.y N T b) generated at any desired position. If, on the other hand, we
ﬂ ’ U\ \ / \ / \ / \ /\ keep the number of impurities constant while increasing the
T, | Vv total number of cells, i.e., lowering the impurity concentra-
\/ \ /\ tion, the bands in the gaps remain in the same positions but
0.2 Iy ! \\/ their width diminishes rapidly. To study this effect, let us
’ ! l 2= 0.9 \\ consider superlattices of different siza=f20, 28, and 36
‘ 0‘1 - 0‘2 0‘3 e‘V but with the same number=3 of (equidistant impurities.
' ' ’ In Fig. 16 we plot the transmission coefficients. Going down,
1. f NN N from Fig. 16a) to Fig. 16c) the sizen increasegwhile the
I VIV el mpur tration diminishgsand simultaneously th
[ || \ impurity concentration diminis éasan_ simultaneously the
T, - I { | \ // \/ impurity bands become narrower. It is interesting to notice
’ | \ Y \ / that the principal bands are strongly modified and even break
/ | ’ \ \ in thinner bands. The appearance of multiple, narrower, close
0.2 - u\f \/\ B \\// minibands might favor the conduction process.
)z =08 o -
The effects on the band structure are qualitatively similar
0.1 0.2 0.3 eV for square- and-barrier chains. Although these results are
1. C) Nt well known a_nd can be calculated by e\{aluating products of
{ ( / | \ / | @ transfer matrices, our formulas permit simpler and easy cal-
T /\ \/ \\/ culations. The technological consequences of playing with
" f R / oY these properties may be of great interest. We presented here
o ] f Y \ an easy method for making paran_]etric changes and for
N ' \// M ) m=o07 \ gtvrilcutitrg% atir|1c()ari(;:]1ppearance of levels in the gaps and for band
g.
0.1 0.2 0.3 eV As for the one-impurity or defect chains, the number of
1 | q \ /v\\ /\f\ /A\ A o resonant pairs of levels per unit energy dependg;on
T ‘ \ ] EEY 5. Multilayer optical power limiting
\ / ! \ Optical multilayer systems have been considered for
0.2 - \ \ ;tudymg optical properties. Th_e superluminal tunnellr_lg
k v U z=0.6 \_ times have been studied within this approach. The phase time
0.1 0.2 0.3 oV predictioné? agree impressively well with the experimental
measurement®. Linear and nonlinear response system prop-
1 1 ﬁ /\ A M erties have been also of interest recefitliZinear response
\ \ \/ \b/ \ \ systems are described by
: [ 2
oo J | \U \\ e €1k3E (72)
. J J \ \ | -5 \ dz
0.1 0.2 0.3 eV and the nonlinear response systems, in the “single-layer ap-
proximation” of Ref. 23, by
2
FIG. 14. In this sequence we have the transmission coefficients 9z k(11— || ?)E. (73

and the modified band structure for a periodic potential containing
one impurity with valley widthag=za, and z;<1 which corre- . . . L .
sponds‘,) quglitatively, toya nega?ive Idi?feren@é<0 between the Here € Is the dielectric constant ard, .the incident electric
impurity and the host core charge numbesceptors of electroins field with frequency wo=Kkoc. . It is easy tQ show
As z departs from 1, thdevels in the gapmove towards higher that for a system of alternating layers of linear and
energies. The level repulsion effect is also apparent in these figure§onlinear responses, with wave numbérs kO\/E—l and K

For z,~0.5, the level in the gap enters into the band and another koe,(1—[€,[%), and widthsa, and b, respectively, the
level abandons the band from the opposite band edge. transfer-matrix elements are
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z < 1.0 J N

0.71 2007 400 800 1000 nm
z > 1.0 z'_ - b

’_|_| TT |_||_”—H_||_| FIG. 15. The transmission coefficients in the
0.1 200 400 s00 1000 1400 left and right columns correspond to superlattices

with one and two impurities, respectively. In each
column we havez;=0.9, 1.0, and 1.1. As ex-
pected forz;>1, correspondingqualitatively) to

a positive differenceAZ>0 between the impu-
rity and the host core charge numbédsnors of
electrong, the level in the gap separates from the
lower band edge. It is also nice to see that in-
creasing the superlatice and simultaneously the
number of impurities, with the same;, the
single level in the gap splits to form a miniband
in the gap.

a=——[(K+k)%e'1— (K—k)%e '] (74

4kK

and

¥ Y :
¢ _(K?2=k?) (@i gy 75
P= "4k '
Here 0,=(2K—Kk)by—kagy and 6,=(2K+Kk)(ay+bg). Us-
. \ . ing this transfer matrix, the multichannel transmission coef-

n = 20

0.2 0.3 eV ficients have been calculated. The transmission probabilities

obtained, as functions of the incident intensit,|, are

= 28 { Y shown in Figs. 1@®-17c), for n=10, ag=by=0.5, €;

b) =1.2, e,= 2.5, and different values &,c. Incident intensity
cutoffs are predicted. This could be related to power limiting
as suggested in Ref. 23.

B. Multichannel transmission through [ GaAg ( §-scatterer

0.1
0.1 0.2 0.3 eV layer)]" superlattices
Y ' ' In order to study simple examples of multichannel trans-
. ) port processes, let us consider a 3D superlattice
BABAB. ..ABAB, whereB is a thick semiconducting layer
T, andA is a kind of monoatomic layer, modeled as a plane of
attractive or repulsives-scatterer centers; see Fig. 18. As-
0.2

0.2| suming the periodic potential

0.3 eV N, N/L

Y, =y8(z— 7l S(X—x,)o(y—
FIG. 16. The purpose of the three graphs here is to show the P(XY,2)=y8(z= 7 C)Zl M}::l (X=X,) oY =Y )

impurity concentration effect. Keeping the number of impurities

constant §;=3) but increasing the total number of ceffsom n 7=1,...Nn, (76)
=20in (a) to n=36 in (c)], i.e., lowering the impurity concentra-

tion, the bands in the gaps remain in the same positions but theivith longitudinal lattice parametég and interaction strength
width reduce rapidly. v, one can easily obtain the channel coupling parameter
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T, a)
0.6 w=10
0.3 - w, = 0.2
B A B A B A B
0.2 0.4 0.6 0.8 E, Vc(m,y) + Vp(at,y,z)
T, b
0.6
0.3 w, = 0.5
z
E,
FIG. 18. A soluble multichannel superlatice

BABAB. ..ABAB, where monoatomic layer& (modeled as 2D
arrays of attractive or repulsivé-scatterer centersalternate with
dicker semiconductor layelB.

The channel states of E¢B),

ISI—

2 . ymX nymy
> sin-_—sin~——=, (79
y

Bixy)= == -
WyWy {ni2:n3+ n§} X

are either nondegenerate or doubly degenerate states. Taking
0.3 into account these definitions, and proceeding as usual with

=
8

0.6 -

E, = 0.99 5 potentials, it is easy to determine th&layer (time-
1.9 » reversal-invariant and flux-conservinggansfer matrix
. o
M oo as PBs @0
T\Bs A
with
r r
0.4 0.8 1.2 Wo R
ki kg
FIG. 17. All graphs in this figure correspond to an optical het- 1] r Ik
erostructure witm=12. In (a), (b), and(c) the transmission coef- as=Iyt+Bs, Bs== _a 2z , _n_t
ficients are plotted as functions of the incident field inteniy, 2i| ko kp INTII ¥
for different field frequenciesoy. Varying this parameter we can
find different band structures. An interesting result is the wide gap
when wy=0.5. In(d) and (e) the band structure as a fuction of the (81)

frequency, for fixed incident field intensity;|, has interesting and

distinct features. . . . .
Although we will obtain here various results for an arbitrary

N, N, number of channeldy, to evaluate the transmission coeffi-

Sz—nl) > > BE (XY, B1(X,,Y ) cients Tj;, we shall restrict ourselves tN=2 andN=3
v=1p=1 open channels or propagating modes.

_ To use the polynomials and invariant functions mentioned

=6(z= 7l (77 above, it is necessary to determine the eigenvalues of the

where thei channel index refers to any pair of quantum 2NX2N transfer matrixM and to evaluate the matrix poly-
numbers n,,n, =1,23... in the wave function nomials. To this purpose, we need first to obtain the unit-cell

énn (X,y), corresponding to the transverse energy levels transfer matrix. A unit cell of our superlattice contains a layer
xy A and a layerB, which we find convenient to build as a
hzwz( n2 nz) half-layerB followed by the plane ob-scatterer centers and

87’my

1]

= AT A (78)  again a half-layerB, i.e., BY2ABY2 Thus the single-cell
transfer matrix is given by

i 2 W2l

*
2m 5 y

W

205120-17



PEDRO PEREYRA AND EDITH CASTILLO PHYSICAL REVIEW B35 205120

112 T 2 N=2 a)
M=WYM W¥2={ | (82) n=1
B a 1 L’__V’/
ikqb !
1K1
o 0 © (k) b Tops
I
W=(0 w*)' w=| 0 €% . (83 1
Typ»
It is easy to verify that in this case 1
Ty,
B: wllzﬁi f’l?T( w* )1/2’ (84)
with ¢ diagonal and? an orthogonaN X N matrix. Defining
appropriate unitary matrices= 029 andv=—iu", we get,

as could be expected, a realization of Bargmann’s represen-
tation, i.e.,8=usinhyv* with
&1

sinhy=é= &2 . (85)

1.235 1.24 1.245 1.25 eV

It is not difficult to show that the transfer-matrix eigenvalues

are given, in this case, by 2 1:_: 5 c)
\j=coshy;+sinhy; =1+ §JZ+ SE 1 v
)\j+N:COShXj+N_SinhXj+N:\/1+§j_gj- (86) 1 —_—
To plot these functions, we assume that thecatterer cen- T
ters in thex-y plane are located in a square lattice. If we 22
write the functionsgy (x,,y,) as 1
|| ||||| Te
B (X0 Y= it 2 (1 x) 'r{”y”< ) o
(X,,Y,)= ——=—==SiN ——(v—Xy) [SiN ——(u—Y1) |,

i K Wny NV N,u T1,1 Jm
with x, andy; the coordinates of thé center nearest to the 1 2 8 4 5 6 ev
origin, it is easy to see that the coupling parameiggsin
Eq. (77) depend strongly on the coordinates,y;. FIG. 19. Total and partial transmission coefficients in the two-

Let us now evaluate transmission probabilifigg, ; |2for  channel caseN=2), for attractive 5-scatterer centersy<0). In
some specific cases. In Figs.(#8-19c) and 2@a)—20(d), (@ and(b), n=1 and an isolated resonance, above the channel 1
these quantities are plotted for the two-channel case ( thresholdE, and belowEy,, is produced by coupling between an
=2). In Figs. 21 and 22, we consider a larger number ofPen and a bounded evanescent sat¢he continuum The reso-
propagating modesN>2). To simplify the notation, the hance aE=1.242 eV is magnified and plotted (). The strong

n-cell transmission coefficientsT(); . are denoted just as SUPPression iffy, is accompanied by a resonant behaviorTes
T d that can be fitted quite well with a Lorenzian function. As the num-

i‘j . — .
Since some of the multiple features characteristic of thé)er of cells_,n, grows(see grapHc)] for n=9 the resonance splits
off generating a band of resonances.

multichannel processes can already be observed in the two-
channel case, we shall start discussing this system. For the

superlattice that we have just introduced, let us consider twa@-scatterer centers for eaéhlayer), andy=—500 eV. For
particular cases, differentiated mostly by their interactionthe transmission coefficients in Fig. 20 we consider
strength signs. In both cases we will concentrate on the chan=20 A, w,=100 A, w,=50 A, x;=y;=1/2, N,=30,

nel coupling effects. While in Fig. 19 the coupling effects areV, =15 (meaning 4505-scatterer centers for eachlayer),
observed basically at energies below the channel thresholahd y=800 eV.

Eino (with negligible band distortion in Fig. 20 strong band It is interesting to see that for thattractive 5-scatterer
distortions are observed. For the superlattice with transmiseenters (<0), very nice resonances, with typical resonance
sion coefficients shown in Fig. 19, we halg=20 A, w,  shape and features, appear because of the coupling between
=w,=40 A, x,,=1/3,y,=1/7, N,=N,=6 (meaning 36 an open and an evanescent s{aee Fig. 1¢b)]. The reso-
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1.2
0.9
0.6
0.3
1
2
1.5
T T T T T T T T ' 1
0.5 2 4 6 8 10
E(eV)
FIG. 21. Three propagating channels and their transmission co-
efficients. In this graphs a small coupling allows one to recognize
2 the uncoupled band structure for channels 1, 2, and 3. The channel
coupling induces transitions from chanmeb channelj #i even if
1.5 the energy lies in the gap of one of them.
1 The system whose transmission coefficients have been
plotted in Fig. 20 contains planes oépulsive 5-scatterer
0.5 centers. Although at very small energies E,;,Ein,) we
also find a channel-coupling resonariseicated withT; ),
the transmission probability from channel 1 to channel 2
becomes larger than for the attractids above the energy
2 thresholdss,,; andE,y,. For the parameter values chosen in
this caseT, , is comparable in magnitude wiffy ; andT, ,.
1.5 In some cases strong suppressions in the transmission coef-
) ficientsT, ; and T, , are observed, with no influence on the
1 total transmission probability or conductanﬁi%:TrtntE.
For this reason, it is clear that this type of effects will remain
0.5 unobserved, at least while the experimental techniques can-
’ not efficiently discriminate one channel from another. Be-
sides the band distortion, other significant features are also

1 2 g 4 E(eV) apparent. At the incoming particle energy of 4.6 eV in Fig.
20(c), the transition coefficient3'; , and T, ; contribute to

FIG. 20. Two-channel system and the coupling effects on thehe largest value of the conductanGy, while T11=Taoo
transmission coefficient$;; above the channel thresholds and for pecomes zero. In Fig. 28), the transfer-matrix trace has
different number of cellsp. As in the preViOUS figure, interesting been also p|0tted and, as in the one propagating mode case, it
resonant couplings can be seen.(th atE=4.5 eV, a complete jndjcates the regions of allowed and forbidden energies.
suppression in the “elastic” transmission coefficiént is accom- It is interesting to notice that the channel-mixing effects,
panied by strong resonances in the transition coefficigpts measured by the relative size f ,, become larger as the

system’s sizd. =nl increases. '

nance att=1.242 eV, in Fig. 16a), is redisplayed in Fig. In Figs. 21 the transmission coefficienfs; are plotted
19(b). A strong suppression i, ; is accompanied by a reso- for N=3. In these figures we have considetgd 16 Ay
nant behavior off; ,. This resonance has been normalized=0.4 keV, andx;=y;=1 (with w,=w,=24 A and W,
and can be fitted with a Lorenzian function, as is well known=\/,=6). A physically interesting property that can be very
in scattering theory. The lifetime of the quasistationary reso<learly observed is theeturn effect occurring when a par-
nant states, given by the resonance width, becomes larger &sle comes out in the same channel of the incoming one but
the number of cellsp, increases. Simultaneously, asin- having passed, at least once, through another propagating
creases the resonance splits off generating, due to phase anede. Because of this effect, the band structurelgf is
herence phenomena, a band of resonarises the low- modified in the energy regions where the allowed energy
energy region of Fig. 1@)]. band of channek coincides with the forbidden energy band
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N=3, n=12 and 2.2 eV, corresponding to the second and third energy
. bands. At these energies, the particle starts in channel 3 and
finishes in the same channel but passing through channel 2
Gn or, perhaps, also through channel 1. This type of experimen-
. tal information, even for the two-channel problems, is not yet
available. We expect that such quantities will be measured
soon, because they will give more insight into the tunneling
. mechanism and on the way the flux of certain kinds of qua-
siparticles moves from one channel to another. It is worth
mentioning that this effect depends also on the superlattice
. size and layers widths. Some calculations and also applica-
tions are in progress.
T The channel coupling parametdrg are important quan-
- 11 tities that are strongly dependent on the periodic potential
ability to induce flux interchange between the various propa-
gating modes. In the model considered here, they can easily
- M be calculated for any configurations 86. For different dis-
tributions, distinct and interesting band-mixing effects are
predicted. In other kind of problems—say, spin-dependent
. T problems—incoming particles may emerge on the other side
with their spin reversedf By the same token, heavy holes
transform into light holes. The uncoupled-channel limit reso-
i M nances of theth mode may be present or absent when the
coupling is turned on. Resonances associated with the un-
coupledkth (with k#i,j) channel can be present i {);; .

T Expected and nonexpected phenomena of suppression,
broadening enhancement, and apparaggneration of new
transmission resonances, produced by interchannel cou-
plings are of primary importance and offer the possibility of

'0 ' ; ' é ' j? ' 1 modeling and predicting novel tunneling effects and interfer-
E(eV) ence phenomena.

FIG. 22. Strong coupling of three propagating channels and the
effects in their transmission coefficients. All the transmission coef- VI. CONCLUSIONS

ficients, except the total transmission coefficient or conductance, are Theoretical developments and various physical properties

strongly modified espeC|aI!y for energies in the third band. LooklngOf finite periodic systems have been discussed from the point
carefully at the energy region between 2 and 2.5 eV we can see, far

example, that a particle coming in channel 3 leaves also in chann? f. V'er:N of thel trans_fer matr:lx and the ngtterlng tr?eory. If?
3 after having passed through the other two channels. '.S t_ eory, alternative to the CL.jrre.nt SOl Stat.e .t eory, the
principal features of the real periodic sytems—finiteness and
periodicity—are fully incorporated without any need for
of channeli and whenever the transition probabilii ,  Bloch functions and reciprocal space. While in the standard
takes non-negligible values. Consider, for example, theheory one works, by construction, in the continuous spec-
graphs forT,;, T;,, andTy,. The transition probability  trum limit (of infinite systems in this approach we have
T, is different from zero in the energy regions correspond-complete control of the system’s size and the entire phase
ing to allowed bands of botfi;; and T,,. If we observe coherence phenomena. As a consequence, one can easily de-
now the transmission coefficieiit, , in the gap between the termine the fundamental phase interference effects as well as
third and fourth bands, there is a small probability for thethe discrete character of the energy spectrum, emblematic of
particle to start and finish in the same channel 2 for energiefinite systems. Using simple, algebraic methods, universal,
in the allowed band of channel 1 and the forbidden energieextremely simple and compact expressions for globalell
of channel 2. This is possible if the particle enters in channetjuantities, valid for any realization of the potential function,
2, passes to channel 1, and, before reaching the end of thave been rigorously and directly obtained.
superlattice, comes back to channel 2. In these graphs we can The scattering approach, which up until now has success-
also see thal; andT,, do not reach the maximum value of fully dealt with transport properties of disordered and chaotic
1 in their allowed energy bands. structures, used properly, can also give information on the
If we observe the transmission coefficients in Fig. 22, thennards of finite periodic systems. From the transmission co-
return effect is much more pronounced because the transitiogfficients we get information on the band structure and, even
coefficientsT; ; take values comparable with those Tf; . more, on the intraband structure and on the resonant ener-
This effect is apparent in, say, , for energies around 1, 0, gies. This information opened up the possibility of evaluat-
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ing and describing extended, resonant, and localized stat¢sr repulsive 5 potentials, an interestingeturn effectis
inside the periodic systems. For multichannel systems, Wgjearly recognized when a particle comes out in the same
have also shown that it is possible to evaluate resonant chaghannel as the incoming one but having passed, at least once,
nel couplings and to get insight into the particle’s excursionghrough another propagating mode. Many other properties,
through the space of open and evanescent channels. such as resonance broadenings, suppressions, and channel
From the transfer-matrix combination property,,  mixings, are observed in general. The lateral dimensions
=MM,_, we deduced recurrence relations for the submatriw, , the cell lengtH ;, the number of5’s per plane, and their
cesa, andpB, . These relations were used both to derive newdistribution have important consequences in the transmission
formulas for global scattering amplitudes and quantum propeoefficients.
erties and to deduamatrix recurrence relationsvhose solu- In conclusion we presented here an alternative and con-
tions are the noncommutative polynomiglg ,. These, in  venient method to study some properties in solid-state
the 1D one-channel limit, are the well-known Chebyshevphysics.
polynomials of the second kind.
A highly peculiar and significant property of the general
expressions describing the physicsmtell system with an
arbitrary number of propagating modé¢$ and arbitrary The authors gratefully acknowledge Professor H. Siman-
single-cell potential function is the consistent presence of thfuntak, Professor A. Robledo, Professor J. Grabinsky, and
two fundamental quantum properties: the tunneling effecProfessor R. Perez-Alvarez for useful and clarifying com-
and the phase coherence. The tunneling process is generaffyents and CONACyYT Mexic¢Project No. E-29026 This
expressed by the single-cell matrix elements or the singlevork was done within the framework of the Associateship
cell scattering amplitudes. The multiple reflection and inter-Scheme of the Abdus Salam International Center for
ference phenomena, occurring alongrepetitions of the Theoretical Physics, Trieste Italy.
single cell and between the various channels, is described in
these formulas by means of the polynomiglg,. In this
sense, the theory presented in this paper not only generalizes
the one-channel descriptions to provide extremely simple

formulas for the transmission coefficients af-layer For the benefit of those who are not familiar with the
N-channel systems, but also gives more general, simple, préransfer-matrix method, let us consider a simple example, the
cise descriptions of some fundamental qualitative propertieginite Kronig-Penney model, and calculate the single-cell
The position and widths of the allowed bands are given byransfer matrix. A sectionally constant potential profile of this
the trace of the single-cell transfer matrix, the tunneling resotype might correspond to the conduction- or valence-band
nances by the zeros of the polynomialg . edge of a superlatticeAB)", in which case the effective
Some few-channelexamples have been considered. Wemasses in the alternating layer should be considered. In this
started by studying nonspecific properties common to all 1Qxase, the current or flux conservation requirement must be

one-channel finite periodic systems. To this purpose we usegbnsidered. In the valley regioh of this system, the wave
the Bargmann parameters to express the physical quantitieginction is

Based on this analysis we could make clear that the phase
coherence phenomena are responsible for the universal band
structure behavior. Specific examples were also considered,

anq the square- andtbarrier potelnpals were f_requently used wherek= J(2ma/#2)E, while in the barrier regions, with
to illustrate and perform explicit calculations. We have J2ma 77)(Vo—E) for E<V,, the wave function is
shown that in the limin—co, the square-barrier system is B 0 o

obviously the Kronig-Penney model. Band structure tailoring 2 Cr . B

has also been discussed. Playing with a few potential param-  ¥&(2)=ag€“+bge” “*=age™ (2) +bse ™ (2). (A2)

eters, interesting effects and some well-known properties o » . .

were found both for donorlike and acceptorlike “impurities” 11 continuity conditions at the interface poirgsand z,

or topological defects. We have shown that easier impurity™ 2 Po, at the left- and right-hand sides of barrigrcan be
calculations can be done using this method and that the isd!"tten as

lated impurity levels or minibands in the energy gaps can be
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APPENDIX A: THE TRANSFER MATRIX IN THE
KRONIG-PENNEY MODEL

Ya(2)=are *+bpe ®=a,0(2)+bag(2z), (AL)

located almost at will. We also applied our method to (aBe"Zr )
multilayer quasilinear optical systems and quantum dot ar- be(z) )= N
rays (not reported hepewith equal feasibility and success. bge™ 4
A short discussion of simple but illustrativievo- and ) ) Kz
three-channebystems was also presented. To illustrate the 1 ktik  k—ik) [ ae™
analysis of this type of system, we considered a soluble mul- - 2k \ k—ik k+ik bAe—ikz(
tichannel superlaticeBABAB...ABAB, where mono-
atomic layersA alternate with thicker semiconductor layers =Mio(z .27 ) pa(z)) (A3)

B. For attractives potentials, faithful resonances appear be-
cause of the coupling between open and evanescent statesd
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. aeks 1 [k—ix k+ix|[age , ex(z-2) 0
oz, )= Ae_ikzj okl ktin k—ik bBe_KZ; #s(zy)= 0 o (@2 bs(2Zp)
=Moi(z, .z, ) da(z; ). (Ad) =Mg(2;,2p) he(2p). (A6)
It i; not difficult to show that the current conservation re- Using the multiplicative property, it is possible to obtain the
quirements transfer matrix relating any two points of the superlattice.
. - . - The state vectors at arg (in the valleyA) andz, (in the
+\ +\
1@)=i@), i(z)=iz) neighbor barrier regioB) are related by
imply the conditions . L -
#8(2p) =Mg(2y,2 )Mio(Z ,Z) )MA(Z ,Z2) Pa(Za)
. 0 1 ikmg/1 O
Mio 1 0 Mio:_K_mA 0 —1/’ =Mpa(zp,2a) da(Za). (A7)

The current conservation requirement
: 1 0 _ikmy 0 1 _ _
Malo —1/Mo= " %mg | —1 o i(z2)=i(20)

The transfer matrices here connect the state vectors in tHgwplies the condition
outside with the state vectors inside the square-barrier poten-

tial. State vectors at any two points of a constant potential M1 ( )M __lkmg
region differ in their phases and are also related by a transfer balg —1/7Pa  km,
matrix. Forz, andz; in the valley regionA, we have

iKmB( 0 1)
1 o @8

In the same way, the matrix relating the state vectors

) elk(za=2a) 0 da(z) and pa(z, =2 +Dby), at the left- and right-hand
ba(z3) = 0 o ik(Zi—20) Pa(za) sides of the square barrier, is obtained from
=Ma(Z},Za) Pa(Za), (A5) Mp(z +bo,27 ) =Mi(z .2, )Mg(z, .27 )Mio(Z" 7).
and forz, andz] in the barrier region, we have Therefore
|
by 1 sinth R b
) ) coshk 0+IWSIH KDg —|Wsm KDg
My(z +bg,z )= K2t 2 K2 2 . (A9)
|Wsmhxb0 coshkbg—i P sinhxbg
|
It is easy to show that the current conservatipiz, ) u 0\[/coshy sinhy\(v O
=j(z") leads to the well-known FC requirement o=lo u*/\sinhy coshy/lo v* (B1)
M] o M Lo A10

u; 0\ /coshy sinhy\fv,; O
MU: H ’ (BZ)
0 u,/\sinhy coshy/\0 v,

APPENDIX B: THE BARGMANN REPRESENTATION
with u’'s andv’s unitary matrices angy diagonal and posi-
tive. In this representation, the transfer-matrix blocks take
ysimple functional forms. In the orthogonal case we have

The transfer matrix of the orthogonal universality class
M, belongs to the symplectic SpKRC) group, with (N2
+N) free parameters, while the transfer matrix in the unitar

universality class M, belongs to the pseudounitary a=ucoshyv’
psU(2N,C) group, with (4AN?>+ N) free parameters. Most of '
the transfer matrices appearing in the literature belong to B=usinhyv™. (B3)

these groups.
Sometimes, it may beonvenientbut it is not essential for The Bargmann parameters are well-defined functions of the

this theory, to express the transfer matrices in the so-callednergyE and other potential parameters in a way which de-
Bargmann representatith pends on the particular physical system. For the familiar 1D
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Kronig-Penney model shown_ in Fig. 3, the Bargmann param- r=—6 ty=—vl(tanhy)vy, (C3)
etersy and ¢= ¢,— ¢, are given by
2 w1\ 12 t=(a")"t=uy(coshy) vy, (CH
—cost ! 1+ —°sint? 2 (€7 vo)
x= e(e—vg) 7 t' =6 1=yp}(coshy) u}, (C5)
(B4)
and r'=B6 ‘=uy(tanhy)ul. (C6)
Thus, the transfer matrix of the unitary universality class can
v2my e ap be written as
¢= 1+
f bg _ _
" ('[T) 1 I"('[’) 1 (C7)
2e—v V2mE (e—vg) uT | ey-1 -1 |
+tan ! Jiotanr( bh 1. ®5) () ()
e(e~vo) while in the orthogonal universality class it takes the form
When the square-barrier potential is due to alternating semi- el o reTred
conductor layers, we haven, and m; as the effective :( (t) () ) )
masses in the valley and barrier, respectively. In the previous o l@hHtr  @hH !

formulas, we have considered also the parameter&b? - - . .

andu o= Vb2 We shall usey and ¢ to discuss the relation The explicit parametrizations appearing on the right-hand
Vo= Volo: & g sides of Eqs(C3)—(C6) correspond to Bargmann’s represen-

between the Chebyshev polynomials and the resonant tran Stion

mission and reflection interference phenomena, keeping the '

analysis as general as possible. The Bargmann parameters _

can also be used to make clear some potential-independent APPENDIX D: MRR AND THE CAYLEY-HAMILTON

features such as the deep relation between the band structure THEOREM
and the 'phase coherence phenomena in periodic systems, dis-|t is not difficult to recognize that th@oncommutative
cussed in Sec. V. polynomial recurrence relation

APPENDIX C: RELATIONS BETWEEN THE SCATTERING p(ni)+ §ip§f11+ nip(nilzzo
AND THE TRANSFER MATRIX

.. . . for n=1 andi=1,2, D1
Explicit relations between the transfer and scattering ma- (bY)

trix elements are known; see, for example, Ref. 22. For scatwherel;= — (B~ taB+ 6) andn,= (5B *aB— yB) are the
tering processes like the one sketched in Fig. 2, the coeffimatrix coefficients for the unitary class, and,=

cientsr, t, r’, andt’ are the reflection and transmission — (8 laB+a*) and 7,=(a* B~ *aB—B*B) the matrix
amplitudes corresponding to incident particles coming fromcoefficients for the orthogonal class, transforms intosba-
the left- and right-hand sides, respectively. The scatteringar recurrence relation

matrix S, which relates the incident amplitudasandd with

the outgoing amplitudeb=ra-+t'd and c=ta+r’d, is B+ 918 oyt F O 1B+ Bl =0,
written as
YV i,j and n#0 (D2)
rot’ S .
S= (t r’)' (C1)  and similar relations fow,; , v, ands;;! . Equation(D1) is

the Cayley-Hamilton theorem fdv1.®” The coefficientsg,,
Let us consider the transfer matrix of the unitary universalityare precisely those of the characteristic polynomialMof
classM, . For TRI systems, we have to take=5* ands  defined by Leverrier's algorithrif, being g;=—TrM and
=a*, and based on the scattering and transfer-matrix defigzn=detM. Taking into account that the recurrence relation

nitions, one easily obtains the following equations: holds irrespectively of the indicesj, we write
t—a—Br=0, TnaaNT 91T nson-11 - TOan-1Tn+ 1+ GonTn =0,
(D3)
r'—pt’'=0, with the initial conditionsmo=1y, for 7=a,8, p{’, p{?,
or my=0, for m=B,y. Since p{ ), and p{?), are formally
v+ 6r=0, equal, we have to deal with only one set of polynomials

which satisfy the relation
1-6t'=0, (C2

+ P S H + =0
whose solutiongwith the dagger (1) meaning the transposepN’“+2N 91PNnvan-1 92N-1P.n+ 17 G2NPen
conjugaté are?? for n=0. (D4)
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Notice that the same equation is valid in the orthogonal uni-
versality class, differing only in the explicit form of the co-
efficients g,. The polynomialspy , are in some respect

universal quantities. Solving fop,, we will be ready to

PHYSICAL REVIEW B35 205120

n+1 n+1
_)\1 _)\2

=5, (E1)

=Pn-

This is the well-known Chebyshev polynomial of the second

determinea,, By, ¥n, ands,, and subsequently to evalu- kind in the eigenvalue representation.
ate the superlattice physical quantities of interest for

multilayer systems. This is one of our main goals.

APPENDIX E: THE CHEBYSHEV
AND THE NONCOMMUTATIVE POLYNOMIALS

1. one-channel case

2. N-channel case
For N=2, we have the MRR

PN, =~ ¢PN,n-1" 7PNn-2> (E12
where (=— (B aB+6) and n=(8B8 *aB—yB). This

To introduce the procedure to solve the most general casi€ems complicated but it is a solvable problem. As men-
using the well-known generating function method and to in-tioned before this three-term relation transforms into the sca-

troduce a notation we start by recalling the well-knownlar recurrence relatiofE1) with 2N+1 terms.

Chebyshev relation

Pnt01Pn-11Pn-2=0, (ED
with p_;=0, po=1, and
g.=—TrM. (E2)

Schematically, we can proceed as follows.
(i) Developing the generating functiog(\)=(1+g;A
+g,0%) "1 around\ =0, one has

WZQM' QNG+ g\ 3+, (ED
where
qo=1, (E4)
d11+9100=0, (E5)
and
On+210910n+17920,=0 for n=0. (E6)

All this is compatible with Eq(D1). Thus,q, can be iden-
tified with p,.
(ii) Any combination like

(E7)

where\; and\, are the eigenvalues &, is also a solution
of the recurrence relation. To fulfill EqQ$E6) and (E7), s;
ands, should satisfy the set of equations

qn=317\2+82)\2,

Sl+52:1! (E8)

S1(N1+91) +S(A2+91)=0, (E9

the solutions of which ardrecall thatg;=—TrM=—\;
—\2)

Ay Ao
—m. (ElO)

Thus,

Without loss of generality and assuming that-\;#0,
Y i andj, we can consider the generating function

In
1+ giN+goh2+ - - gy

=qnot OnN T NNt
whose coefficients)y ; satisfy the following A conditions:

QN)=

(E13

On,o= I (E14
On,1T910n,0= 0, (E19
On2t 910811 920N,0= 0, (E16

and the recurrence relation

an,n+2ont 910N, n+2n-11 - - T Oon-10N,n+11 onN;n
=0 (E17)

Except for the first equation and the last recurrence relation,
these conditions are not fully compatible with the matrix
recurrence relatiofiE12). For example, recalling thaiy _

=0, we have from Eq(E12

for n=0.

Pyt ¢Pno=0 with {#g;.

Thus, the generating function has to be modifie@efore
doing that, we shall continue deriving the coefficiegfs,,
because at the end the general solution depends also on these
quantities. Since thay , are multiples ofl, we shall work

as if they were scalar quantities and, again, to keep a simple
notation we shall also drop the subindiix which will not
appear in our expressions unless the number of channels
needs to be specified. If we take the combination

On=SIN]+SpA0+ - +SonA Dy (E189

and use the previous conditions, the coefficientgan be
determined by solving the set of equations

2N

> dsi=dko, k=01,....N-1, (E19
=1
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where m
> plm_x When m=2N-1,
k=0
Pm=1 2n-1 (E295
> plmk When m=2N  WOX.
k=0

A= MM T - gy O (E20
The coefficientgy,, are the well-known symmetric functions

2N
9m=(—)mI > ML N o Go=1. (E2D)  These matrices satisfy the MRR if

1<1,< <y

It is easy to verify that p1=P1t91Po, (E26)
AN p2=P2+g1P1+92Po, (E27)
Si=an (E22
IT ov—2) Pan—1=Pan-1F01Pan-2F - - +Oan-1P0;  (E28)
17 i.e., the polynomialp,, in Eq. (E25 satisfy the MRR when
and, thus, "
2N \2N+n-1 P=2 PGt po= L. (E29
=2 2w In- (E23 -
=1 H (N =Ny Replacing this, we have finally
j#I ! J
m Kk
'_ro fullfiII the MRR, we have to consider a generating func- PN.m= 2 2 Pn.Ok_1Om-k for m<2N  (E30
tion like k=0 =0
FOO)=(1+pih+pah2+ - +pon - APV HQ(M) and
2N—-1 k
=2 Poh", (E24) Pum= 2 2 PnGk-Om-k for m=2N. (E31)
e =0 <
with p; are NXN matrices and These are precisely the polynomiaglg ., we are looking for.
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