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Abstract

Using a simple approach that requires neither the Bloch functions nor the reciprocal lattice,
new, compact, and rigorous analytical formulas are derived for an accurate evaluation of
resonant energies, resonant states, energy eigenvalues and eigenfunctions of open and bounded
n-cell periodic systemswith arbitrary 1Dpotential shapes, provided the single cell transfermatrix
is given. These formulas are applied to obtain the energy spectra andwave functions of a number
of simple but representative open and bounded superlattices.We solve the fine structure in bands
and exhibit unambiguously that the true eigenfunctions do no not fulfill the periodicity property
|Wl,m (z + lc)|

2 = |Wl,m (z)|
2, with lc the single cell length. We show that the well known surface

states and surface energy levels come out naturally. We analyze the surface repulsion effect
and calculate exactly the surface energy levels for different potential discontinuities an the ends.
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1. Introduction

The calculation of eigenvalues and eigenfunctions is, undoubtedly, one of the
most important and crucial objectives in physics, for they open up the possibility
of evaluating other quantities and facilitate the understanding of the physical prop-
erties. Consequently, the advance of analytical methods for an accurate calculation
of these quantities has been one of the most sustained aims of theoretical research
in physics, specially in quantum and electromagnetic theories. Even though differ-
ent techniques and approaches have been developed to derive compact formulas
for an easy evaluation of these fundamental quantities, only in a small number
of cases has it been possible to deduce analytical, closed expressions. In the present
paper, we will show that this limited class of systems can in some sense be extended
to include 1D finite periodic systems, provided that the single-cell transfer matrix is
obtained [1]. We will report simple formulas for the evaluation of resonant ener-
gies, resonant wave functions, energy eigenvalues and eigenfunctions in open,
bounded and quasi-bounded superlattices. These formulas are written in terms
of the single-cell transfer matrix elements and are valid independently of the poten-
tial shape and the number of cells n. To illustrate the use of these formulas, we will
discuss a number of specific and simple examples of open and bounded periodic
systems.

In the current solid state theory the knowledge of the wave functions and the ener-
gy spectrum of finite periodic systems is still far from complete, though it has been
regarded as completely understood [2], quite a while ago. The Bloch functions and
the continuous energy bands obtained by applying standard methods (such as the
tight-binding, pseudopotential, orthogonalized plane-wave, envelope function meth-
od, etc.) are congruent with the presumption of infinite periodic systems [3]. Even-
though it is known that the number of energy levels in bands and subbands of
finite systems should be finite, the band energies and Bloch functions are often mis-
taken for the energy eigenvalues and eigenfunctions of finite periodic systems [4]. On
the other hand, Ledermann [5] considered that a rigorous treatment of the frequency
problem in the physical theory of crystals was impracticable. Therefore approxima-
tion methods, like the cyclic condition, were developed [6]. The Born�s statement on
the frequency distribution has been also deemed valid, when the number of bound-
ary points is much less than the lattice points [5]. Lately, as the quantum structures
size (experimentally achieved) moved toward the fundamental limits, the contention
between discrete and continuous energy bands description becomes more evident.
Nevertheless, most of the actual discussion of the transport and optical properties
of semiconductor devices and superlattices rest on numerical calculations within
the continuous energy band theory [7–13,4]. It is worth recognizing however that,
in spite of the lack of intraband information, this theory (fully justified in the mac-
roscopic domain) has been useful to build up the conceptual foundation of the pres-
ent low dimensional physics.

In the last years, fairly accurate experiments [14–17] and fanciful applications
using superlattices in the mesoscopic and nanoscopic domains stimulated the
development of ad rem theoretical approaches to account for the fine structure inside
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energy bands. The full quantization of electrons and photons in these systems be-
comes a focal characteristic, relevant in a number of attractive applications as the
foreseen ‘‘zero-threshold lasers,’’ where the electron–hole transitions couple with a
single spontaneous emission mode [18,19]. The transfer matrix method that has been
useful to study wave propagation and electronic structure in 1D alloys [20,21], and
later to study resonant tunnelling and transmission coefficients in heterostructures
and superlattices [14,15,22–29], has opened the possibility of determining intraband

resonant energies in 1D finite periodic systems. Recently, Griffiths and Steinke [30]
reviewed the theory of waves propagation in different kind of 1D locally periodic
media using the transfer matrix approach. Sprung et al. [31] studied the relation be-
tween localized continuum bound states and surface states in finite periodic systems.
Further developments of the transfer matrix approach were successfully applied to
calculate optical transitions in the active region of (blue) laser devices [32]. To our
knowledge, with the exception of a brief introduction to resonant energies and wave
functions in [29] and the �ictp� reprint [33], rigorous analytical expressions for the
evaluation of eigenvalues and eigenfunctions in bona fide finite periodic systems,
do not exist. This paper aspires to contribute to this purpose.

Early in the 1930s, Tamm [34] and Fowler [35] discussed for the first time the
appearance of surface states when semi-infinite and finite systems are considered.
Some years later Shockley [36] studied surface states associated with a finite peri-
odic potential as functions of the lattice constants. The greatly increased experi-
mental evidence for surface states in the late 1940s [37–39] spurred huge interest
in the surface state theory [40–44] and specifically on various aspects of the Tamm
and Shockley states. Even though the Schrödinger equation was solved only
approximately, with the nearest-neighbor and tight-binding approximations, the
one-electron resolvent method in the linear-combination-of-atomic-orbitals [43]
and the pseudopotential method [45] were successful in treating various kinds of
localized states on ideal crystal surfaces. Recently, Ste�ślicka et al. [46] studied quite
extensively the localized states in binary and polytype infinite and semi-infinite
semiconductor superlattices. As will be seen below (Eqs. (14) and (18)), surface
energy levels emerge in a natural way within the theory of finite periodic systems
further developed here.

The theory of finite periodic systems (TFPS) [23–29], originally proposed to cal-
culate scattering amplitudes and related properties in open superlattices, is expanded
here to deduce rigorous and compact analytical expressions for a precise calculation
of the energy eigenvalues El,m and the corresponding eigenfunctions Wl,m (z) (Sections
3 and 4) in bounded superlattices. For completeness, we enlarge in Section 2 the dis-
cussion on resonant energies E�l;m and resonant wave functions W�l;mðzÞ presented in
[29]. To encompass most of the various types of systems of current interest, classed
by boundary conditions (see Fig. 1), we will refer separately to open and bounded
(by finite and infinite height walls) periodic systems. The universal formulas reported
here, written in terms of Chebyshev polynomials Us (which order depends on the
number of cells n) and the single-cell transfer matrix elements, allow to solve com-
pletely the fine structure in the bands, and can easily be applied to calculate intra-
band states, photo-transitions [32], and other transport and optical properties of



Fig. 1. Specific examples of (A) open, (B) bounded, and (C) quasi-bounded 1D n-cell periodic systems.
Some parameters used in the text are also shown.
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finite periodic systems described either by the electromagnetic or the quantum theo-
ries. All the expressions reported below, except for a few equations like (5) and (16),
are valid for any shape of the single-cell potential and, are valid also for systems with
an arbitrary number n of repetitions of the unit cell. In the limit of n fi1, these for-
mulas reproduce the well known results of current theories. In order to illustrate the
application of the principal results, we will consider representative examples of n-cell
superlattices with sectionally constant potentials. It will be seen here that the
assumption |W (z + lc)|

2 = |W (z)|2, is not correct for finite periodic systems, especially
when the physical systems contain a small number of cells. New insights on the local-
ization effect induced by phase coherence and level repulsion effects in bounded sys-
tems will also be presented.

Although we will be concerned in this paper with the simplest and widely used
one channel (1D) approximation, our experience with transmission coefficients in
multichannel systems, shows us that for open systems with uncoupled channels
the transmission resonances for channel k > 1 occur at EðkÞl;m, which coincides with
the resonant energies in the one channel problem Eð1Þl;m, plus the corresponding ener-
gy threshold EðkÞth , i.e., EðkÞl;m ¼ Eð1Þl;m þ EðkÞth . For coupled-channels systems, however,
the transmission coefficient Tj,l presents many more resonances (with amplitudes
61) [29], but they occur at EðlÞl;m and EðjÞl;m. This suggests that the multichannel spec-
trum consists of an appropriate combination of the independent-channels energy
levels.
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2. Resonant energies and resonant states in open systems

It is well established in scattering theory that a resonant transmission occurs pre-
cisely when the incident particle energy coincides with a bound-state energy in the
scatterer system, which for our purpose is a locally periodic n-cell system. For this
kind of systems, independent of the single-cell potential shape, the transmission
amplitudes are obtained from [29]

tTN ;n ¼
1

pN ;n � b�1abpN ;n�1
; ð1Þ

where N is the number of propagating modes (number of physical channels) and the
functions pN,n are N · N matrix polynomials of order n, fully determined in terms of
the single-cell transfer matrix M, which for time reversal invariant systems has the
structure

M ¼
a b

b� a�

� �
. ð2Þ

In the one channel (one propagating mode) approximation a and b are complex
scalars and p1,n is the Chebyshev polynomial of the second kind, Un (aR), evaluated
at the real part of a = aR + iaI. Note that it is precisely through this function that
the specific single-cell potential shape parameters (or the single-cell refraction indi-
ces) enter into the universal formulas. The close relation between the resonant
structure and the spectral properties, allows to determine simple expressions for
the resonant energies. If we use the identity UnUn�2 ¼ U 2

n�1 � 1, we can rewrite
the whole n-cell system transmission coefficient Tn = |tn|

2 = |t1,n|
2 as

jtnj2 ¼
jtj2

jtj2 þ U 2
n�1ð1� jtj

2Þ
; ð3Þ

where |t|2 = 1/|a|2 is the single-cell transmission coefficient. It is clear from this
expression that the transmission resonances occur precisely when the polynomial
Un�1 (aR) becomes zero. Therefore, the mth resonant energy in the lth band [29] is
the solution of

ðaRÞm ¼ cos
mp
n
. ð4Þ

Here (aR)m represents the mth zero of the Chebyshev polynomial with m = 1,2, . . .,
n � 1. The specific functional form of aR depends on the specific single-cell potential
function. It is clear that the number of resonant states per subband equals the or-
der of the Chebyshev polynomial in Eq. (3) and corresponds to the number of
confining wells in the periodic system; in this case n � 1. It is important to notice
that by solving the trascendental equation (4) all the subbands and the whole set
of resonant energies E�l;m, in the selected energy interval, are straightforwardly ob-
tained.

Let us now consider an example. In Fig. 2, we plot the energy spectra and level
densities for the superlattice GaAs(Al0.3Ga0.7As/GaAs)n, assuming sectionally



Fig. 2. The energy spectrum and the corresponding level densities q(El,m) of the first three subbands of a
GaAs(Al0.3Ga0.7As/GaAs)n superlattice, with a = 100 nm, b = 30 nm, and V0 = 0.23 eV. In the upper
part, we show the resonant energies E�l;m for n = 14. In the lower part, the level density q(El,m) for n = 7.70
is compared with the level density q (E) predicted by the Kronig–Penney model, which is reached only
when the number of cells nfi1.
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constant potential profile with GaAs layers of 10 nm, barrier height V0 = 0.23 eV
and Al0.3Ga0.7As layers of 3 nm. In this case, the resonant energies are obtained from

cos kma cosh qmb�
k2m � q2m
2kmqm

sin kma sinh qmb ¼ cos
mp
n
; ð5Þ

where k2m ¼ 2m�vE
�
l;m=�h

2 and q2m ¼ 2m�bðV 0 � E�l;mÞ=�h2. In the upper frame of Fig. 2 we
show the resonant energies inside the first three conduction subbands for n = 14. In
the lower frame we plot the subband level densities, for n = 7 and n = 70. As
mentioned in Section 1, the continuous level density q (E) predicted by the familiar
Kronig–Penney model [8] is reached only when the number of cells n fi1 (see the
lower part of Fig. 2).

For completeness, it is worth recalling that, in the transfer matrix approach, the
allowed and forbidden continuous energy intervals are obtained from the well
known Kramer�s condition [29]

jaRj 6 1. ð6Þ

Let us now turn to the wave functions issue for open systems, in particular to
deducing of exact formulas for the evaluation of resonant states. We shall start
establishing the notation employed. As shown in Fig. 1, the coordinates zj = jlc
(with j = 0,1,2, . . . ,n), define a lattice of points separated by multiples of lc. If
we are interested in evaluating functions at any point z in the (j + 1)th cell, it
is useful to define the difference zp ¼ z� zj ¼ z0o � zo 6 lc. Taking into account this
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and the transfer matrix multiplicative property, it is easy to see that the transfer
matrix Mz (z,zo) relating the state vectors U (zo) and U (z), can be factorized
either as

Mzðz; zoÞ ¼ Mjðz; z0oÞMpðz0o; zoÞ ð7Þ

or, as

Mzðz; zoÞ ¼ Mpðz; zjÞMjðzj; zoÞ. ð8Þ

Here Mj is the full j-cells transfer matrix

Mj ¼
aj bj

b�j a�j

 !
¼ Mj

with aj = Uj � a*Uj�1, bj = bUj�1. Mp is a partial cell transfer matrix which, in gen-
eral, we write as

Mp ¼
ap bp

cp dp

 !
.

Therefore, the state vector at any point z (inside the j + 1 cell) is obtained from

UðzÞ ¼ MpMj
u
!ðzoÞ
u
 ðzoÞ

 !
¼ MjMp

u
!ðzoÞ
u
 ðzoÞ

 !
; ð9Þ

where u
!ðzoÞ and u

 ðzoÞ are the right and left propagating functions at zo. Assuming
incidence from only the left-hand side, we have

u
 ðzoÞ ¼ �

b�n
a�n

u
!ðzoÞ ¼ rn u

!ðzoÞ

with an and bn being the whole n-cell system transfer matrix elements, and rn the total
reflection amplitude. Hence, the wave function is given by

Wðz;EÞ ¼ u
!ðzoÞ aj � bj

b�n
a�n

� �
ðap þ cpÞ þ b�j � a�j

b�n
a�n

� �
ðbp þ dpÞ

� �
. ð10Þ

It is obvious that by evaluating this function at E�l;m, we get the desired mth resonant
wave function in the lth subband, i.e.

W�l;m zð Þ ¼ Wðz;E�l;mÞ. ð11Þ

In 1D periodic systems the resonant wave function W�l;m zð Þ is a simple but not trivial
combination of Chebyshev polynomials. It is easy to verify that Eq. (10) implies:

Wðzn;EÞ ¼
1

a�n
u
!ðzoÞ ¼ tn u

!ðzoÞ ¼ u
!ðznÞ;

Wðzo;EÞ ¼ 1� b�n
a�n

� �
u
!ðzoÞ ¼ ð1þ rnÞu

!ðzoÞ ¼ u
!ðzoÞ þ u

 ðzoÞ



Fig. 3. Resonant wave functions at different points of the energy spectrum of the open superlattice
GaAs(Al0.3Ga0.7As/GaAs)n. All squared wave-function amplitudes are plotted using arbitrary units. To
get an idea of the relation between the eigenfunction amplitude and the energy, we plot in (A), using the
same scale, the resonant functions jW�1;1ðzÞj

2 and jW�2;1ðzÞj
2 with different subband indices. (B and E) The

resonant functions jW�2;2ðzÞj
2 and jW�3;4ðzÞj

2, at E�2;2 ¼ 0.11761667862 eV and E�3;4 ¼ 0.24557249944 eV (first
and last arrow), respectively. (C) The function evaluated at the arbitrary energy indicated by the second
arrow. This function is partially transmitted and partially reflected. (D) We have a wave function in a gap,
stationary in the left-hand side and exponentially decreasing inside the superlattice.

8 P. Pereyra / Annals of Physics 320 (2005) 1–20
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with tn and rn the n-cell transmission and reflection amplitudes, respectively. We
plot in Fig. 3 several wave functions for the superlattice GaAs(Al0.3Ga0.7As/
GaAs)12 mentioned before. In the upper part we have the spectrum of resonant
energies and a sketch of the superlattice potential profile which, to visualize the re-
gions where particles are piled up, is drawn in gray trace alongside the wave func-
tions in the other frames. To get an insight of the relation between the
eigenfunction amplitude and the energy, we plot in Fig. 3A (using the same vertical
scale), the eigenfunctions jW�1;1 zð Þj2 and jW�2;1 zð Þj2 for different subband-index l. It is
evident from this figure that as the energy (and the subband index l) increases, the
wave function amplitude gets smaller. To see the wave functions at qualitatively
different energy values, we plot the wave functions shown in Figs. 3B–E for the
energies indicated with arrows in the upper frame. The first and last arrow point
to resonant energies, the second indicates an arbitrary point inside the second sub-
band, and the third arrow any point in a gap. At these points the transmission
coefficients take different values. While for the wave functions shown in Figs. 3B
and E, the transmission coefficient is 1, in Figs. 3C and D it is 0.2419 and
1.7284 · 10�9, respectively.

In Figs. 3A, B, and D, we have the resonant functions: jW�l;1 zð Þj2; jW�2;2 zð Þj2
and jW�3;4 zð Þj2. It is evident that these functions are remarkably modulated by an oscil-
lating envelope function with m � 1 minima, in the inner part, plus two minima at the
superlattice surface, i.e., at zo = 0 and zn = nlc. It is worth noticing their space and
intraband symmetries. We will comment more on these symmetries below. Notice also
that, as mentioned in Section 1, none of these functions fulfills the periodicity relation
|Wl,m (z + lc)|

2 = |Wl,m (z)|
2. Furthermore, the resonant states are extended wave func-

tions with particle density different from zero throughout and at the ends of the system.
This will not be the case, of course, for bounded systems.

The wave function |W2 (z,E)|
2, at E = 0.125 eV, compared with the resonant func-

tions in Figs. 3A, B, and E, looks rather irregular with a complicated behavior along
the superlattice. As can be seen in Fig. 3C, W2 (z,E) is a partially transmitted and
partially reflected extended wave function.

In Fig. 3D we plot the gap function |Wg(z,E)|
2 for E = 0.16 eV, which lies in the

gap between the second and the third subbands. The behavior of this wave function
agrees with the vanishing of the transmission coefficient, and makes evident an inter-
esting localization effect induced by phase coherence, as was in some sense insinuated
by Kohn [7]. This is a very suggesting result that deserves further analysis.
3. Energy eigenvalues and eigenfunctions for bounded systems

An important extension of the scattering approach is accomplished when the
transfer matrix method is applied to study stationary properties of bounded periodic
systems. For this type of problems we will obtain general expressions for the evalu-
ation of their eigenvalues and eigenfunctions, i.e., formulas that will be valid inde-
pendent of the specific single-cell potential parameters. We shall also discuss some
specific examples.
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If we have a periodic system with exactly n-cells between z ¼ zþo and z ¼ z�n , the
state vectors at these points are related by

u
!ðz�n Þ
u
 

z�n
� �

 !
¼

an bn

b�n a�n

� �
u
!ðzþo Þ
u
 

zþo
� �

 !
; ð12Þ

where [28]:

an ¼ pn � apn�1;

bn ¼ bpn�1;

are, in the general case of N propagating modes, N · N matrices. The vanishing of
the wave functions

wðzoÞ ¼
XN
i¼1
ðui
!ðzoÞ þ ui

 ðzoÞÞ

and

wðznÞ ¼
XN
i;j¼1
½ðan þ b�nÞi;j uj

! ðzoÞ þ ðbn þ a�nÞi;j uj
 ðzoÞ�;

required by the boundary conditions, leads straightforwardly to the implicit eigen-
values equation

an � a�n þ b�n � bn ¼ 0. ð13Þ
In the 1D one-mode approximation (where an = Un�a*Un�1 and bn = bUn�1), this
matrix equation takes the simpler form

Un�1ðaI � bIÞ ¼ 0. ð14Þ

Here the subscript I refers to the imaginary part. This is another of our main results.
A number n � 1 of the energy eigenvalues, in each subband of the bounded system
[29], constitute the zeros of the Chebyshev polynomial Un�1, the other two eigen-
values come from the factor (aI � bI). This is a non-trivial result; it leads to recognize
the remarkable surface level-repulsion effect (SLRE), responsible of the well-known
Tamm and Shockley states. The hard walls push upwards two of the n + 1 energy
levels of each subband. As is also well-known and will be seen below, these are local-
ized surface wave functions. To illustrate this effect with an specific example, we con-
sider the superlattice ((GaAs)1/2Al0.3Ga0.7As(GaAs)1/2)12 bounded by infinite hard
walls. In the upper part of Fig. 4, we plot its electron energy spectrum in the effective
mass approximation. The large arrows indicate the two (almost degenerate) energy
levels pushed out from each energy subband. The fourth arrow, at 0.16815 eV, indi-
cates the position of two levels driven out from the second subband. Focusing at this
point, we find out that these levels are separated from each other by approximately
0.6 leV.

Before discussing the bounded system eigenfunctions, let us see what happens
with the energy eigenvalues and the energy spectrum when the thickness of the



Fig. 4. Energy eigenvalues and eigenfunctions jWb
l;m zð Þ 2j for a system bounded by infinite hard walls as in

Fig. 1B, but of length L = nlc. The potential parameters are the same as in Fig. 2. The larger arrows,
around 0.1681 and 0.364 eV, indicate the quasi-degenerated energy levels pushed up by the surface hard
walls. The small arrows indicate the energy eigenvalues E2,2 and E2,3, whose eigenfunctions are plotted in
(A and B). It is interesting to compare these functions with the corresponding ones in Fig. 5, where the
system length is L = nlc + a.
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quantum wells, at the ends of the superlattice, are slightly modified. Suppose that we
have a system of length nlc + a instead of nlc, which we can obtain by adding, for
example, two layers of thickness a/2 at the ends of the n-cell superlattice. The implicit
equations is then slightly modified and, instead of equation (13), we now have

ðaneika � a�ne
�ikaÞ þ b�n � bn ¼ 0 ð15Þ

and instead of (14), we have

Un sin kaþ ðaI cos ka� aR sin ka� bIÞUn�1 ¼ 0. ð16Þ
In the upper part of Fig. 5, we plot the energy spectrum for the superlattice
GaAs(Al0.3Ga0.7As/GaAs)12, whose length is L = nlc + a. Whereas the energy
spectra of this and the n-cell system are quite similar (see the upper parts of
Figs. 4 and 5), their eigenfunctions present some differences, which we will dis-
cuss now.

Once the energy eigenvalues are known, it is easy to obtain the corresponding
eigenfunctions. As for open systems, we start by finding the wave function at any
point z in the (j + 1)th cell, with j = 0,1,2, . . . ,n � 1. Using the transfer matrix
properties and the boundary conditions we easily obtain, for a system of length
L = nlc, the wave function

Wbðz;EÞ ¼ A ðap þ cpÞ aj � bj
an þ b�n
a�n þ bn

� �
þ ðbp þ dpÞ b�j � aj

an þ b�n
a�n þ bn

� �� �
. ð17Þ



Fig. 5. Energy eigenvalues and eigenfunctions jWb
l;m zð Þj2 for a system of length L = nlc + a bounded by

infinite hard walls like in Fig. 1B. The small arrows indicate the energy eigenvalues E2,2 and E2,3, whose
eigenfunctions are plotted in (A and B). The larger arrows indicate the energy levels pushed up by the
surface repulsion effect. The corresponding eigenfunctions of these levels jWb

2;12 zð Þj2 and jWb
2;13 zð Þj2,

concentrate the particles near the surface and the high symmetry characteristic of the other eigenfunctions
is broken. None of these functions is periodic in the Bloch sense |Wl,m (z + lc)|

2 = |Wl,m (z)|
2.

12 P. Pereyra / Annals of Physics 320 (2005) 1–20
Here A is a normalization constant. Evaluating this function at E = El,m, we obtain
the corresponding eigenfunction

Wb
l;mðzÞ ¼ Wbðz;El;mÞ.

This is a rigorous solution of the Schrödinger equation for 1D finite periodic sys-
tems, bounded by infinite hard walls. In the particular case of a superlattice with
length nlc + a, the wave function gets an overall factor eika/2, and the phase
ðan þ b�nÞ=ðbn þ a�nÞ is replaced by ðan þ b�ne

�ikaÞ=ðbn þ a�ne
�ikaÞ. This phase has the



Fig. 6. Eigenfunctions jWb
l;m zð Þ 2j in the first subband of a GaAs(Al0.3Ga0.7As/GaAs)n superlattice, with

n = 12 and the potential parameters as in Fig. 2. The eigenfunctions in this column, exhibit remarkable
spatial and intraband symmetry. The spatial parity symmetry has the center of the periodic system as a
symmetry point. Looking at the whole set of eigenfunctions in a band, the intra band symmetry is quite
apparent. The first and the upmost eigenfunctions have similar envelope shapes, the same happens with the
second and the last but one eigenfunctions, and so on. This symmetry has a symmetry point in the middle
of the band.

P. Pereyra / Annals of Physics 320 (2005) 1–20 13



Fig. 7. Eigenfunctions jWb
l;m zð Þ 2j in the second subband of a GaAs(Al0.3Ga0.7As/GaAs)n superlattice, with

n = 12. Comparing with the eigenfunctions in Fig. 6, we notice that the oscillation frequency in the second
subband is twice the frequency of the first subband. In general, the oscillations frequency in the lth
subband is l times the frequency of the first subband. However, the envelope functions for the same
excitation level m are equal and independent of l.

14 P. Pereyra / Annals of Physics 320 (2005) 1–20
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interesting effect of shifting the maxima of the envelope functions by p/2. In Fig. 5,
we plot the same eigenfunctions jWb

2;2ðzÞj
2, jWb

2;3ðzÞj
2 as in Fig. 4, plus the wave func-

tions jWb
2;12ðzÞj

2, jWb
2;13ðzÞj

2 corresponding to the energy levels pushed upwards be-
cause of the SLRE. While the envelope functions of the n-cell system of length
L = nlc + a have a sine-like shape (see Figs. 5A and B), the envelope functions of
the system of length L = nlc are cosine-like (see Figs. 4A and B). It is interesting
to notice that the eigenfunctions Wb

2;12ðzÞ, Wb
2;13ðzÞ describe particles localized at the

ends of the superlattice. These are explicit realizations of Tamm and Shockley�s sur-
face wave functions, which up to now were calculated only in an approximate fash-
ion.

In order to expose similarities and symmetries of the superlattice eigenfunctions,
we plot in Figs. 6 and 7 two comparable sets of eigenfunctions for: the first and sec-
ond subbands, respectively. In each band of a bounded periodic system we have
finally n � 1 energy levels, excluding the two levels displaced upwards by the surface
repulsion. We show on each of these graphs the eigenfunctions for: the first two,
three intermediate and the last two subband levels. We show also in these figures,
in gray a sketch of the superlattice potential profile. The envelope of the wave func-
tions with the same index m, in Figs. 6 and 7, is similar. Comparing both sets of eigen-
functions, we notice that each oscillation in the first subband gets splitted in the
second and so on, as we go to higher energy subbands. Looking at the eigenfunctions
of a given subband, a surprising intraband symmetry, with respect to the subband
center, can be observed. Accordingly Wb

l;mðzÞ ’ Wb
l;ðn�mÞðzÞ. As is well known, the

most important difference between a periodic potential and a constant potential both
flanked by infinite hard walls, is the presence (in the periodic potential case) or ab-
sence (in the infinite well case) of phase interference effect responsible for the energy
levels splitting, that leads to the band structure.

It is important to remark again that none of the bounded eigenfunctions fulfill the
periodicity relation jWb

l;mðzþ lcÞj2 ¼ jWb
l;mðzÞj

2. For Bloch functions confined within
an infinite square well, Ren [47] reached recently a similar conclusion.
4. Energy eigenvalues and eigenfunctions for quasi-bounded systems

Another and more realistic type of bounded periodic systems are the n-cell super-
lattices confined by cladding layers with finite potential walls. A potential profile of
this type is shown in Fig. 1C) and in the upper part of Fig. 8. Assuming E < Vw and a
superlattice of length nlc (i.e., a finite periodic system with exactly n cells between the
two walls of finite height at zo and zn), and performing a simple calculation, we can
deduce the following general implicit eigenvalues equation:

hwUn þ fwUn�1 ¼ 0 ð18Þ
with

hw ¼ 1 ð19Þ
and



Fig. 8. Quasi-bounded eigenfunctions jWqb
l;m zð Þ 2j in the second subband of a GaAs(Al0.3Ga0.7As/GaAs)n

superlattice, with AlAs cladding layers and n = 12. These functions are rather similar to the corresponding
functions in Figs. 5 and 7. For the confining potential height Vw equal to 0.44 eV, indicated in the
superlattice sketch, the repulsion effect is weak and the effect slightly visible.
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fw ¼ aI
q2w � k2

2qwk
� aR � bI

q2w þ k2

2qwk
. ð20Þ

Here q2w ¼ 2mðV w � EÞ=�h2 and k is the wave vector at zþo , and z�n , aR and aI are the
real and imaginary parts of the single-cell transfer matrix element a.

For a system of length nlc + a, like the superlattice in Fig. 8, the coefficients in Eq.
(18) become
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hw ¼
q2w � k2

2qwk
sin kaþ cos ka ð21Þ

and

fw ¼
q2w � k2

2qwk
ðaI cos ka� aR sin kaÞ � aR cos ka� aI sin ka� bI

q2w þ k2

2qwk
: ð22Þ

To illustrate these formulas we consider again the AlAs/GaAs(Al0.3Ga0.7As/
GaAs)12/AlAs heterostructure, and plot in Fig. 8 its energy spectra and several eigen-
functions in the lower bands. For this system the superlattice confining potential is
Vw = 0.44 eV. The surface repulsion effect is in this case negligible. Therefore, each
subband contains n + 1 energy levels, which correspond to the same number of wells
between the AlAs cladding layers. We shall see below that the uppermost two levels
of each band become closer to each other and separate from the others as the con-
fining potential Vw grows.

Quite similar structures are used in the active region of laser devices. Even though
the real systems are not as precise and perfect as the theoretical model might be, the
main qualitative and quantitative features of photoluminescence experiments are
correctly accounted for when the energy spectra (for the valence and conduction sub-
bands) is calculated by using the transcendental eigenvalue equation and the corre-
sponding eigenfunctions (see [32]). Eigenfunctions of quasi-bounded 1D periodic
systems can be obtained following the same procedure explained for open and
bounded systems. Using the transfer matrices introduced in previous sections, it is
easy to show that the wave function, at any point z in the j + 1 cell, is given by

Wqbðz;EÞ ¼ A
gn

ðap þ cpÞaj þ ðbp þ dpÞb�j
h i

1� i
qw
k

� �n
þ ðap þ cpÞbj þ ðbp þ dpÞa�j
h i

1þ i
qw
k

� �o
. ð23Þ

Here A is a normalization constant and

gn ¼ anI
q2w þ k2

2qwk
� bnI

q2w � k2

2qwk
� bnR

with anI ¼ an � a�n, bnr ¼ bn þ b�n and bnI ¼ bn � b�n. Again, evaluating the wave func-
tion at E = El,m, we obtain the corresponding eigenfunction

Wqb
l;mðzÞ ¼ Wqbðz;El;mÞ. ð24Þ

With this formula we complete the set of rigorous solutions of the Schrödinger or
Maxwell equations for 1D finite periodic systems with different boundary conditions.
In Fig. 8, we plot the eigenfunctions Wqb

2;5ðzÞ, W
qb
2;12ðzÞ, and Wqb

2;13ðzÞ that should be
compared with those in Figs. 7 and 5. The eigenfunction Wqb

2;5ðzÞ looks rather similar
to Wb

2;5ðzÞ in Fig. 7C). In Figs. 8B and C) the surface functions start to build on.
Although imperceptibly, the wave functions decrease exponentially inside the poten-
tial walls. As in the previous figures, two main characteristics can be distinguished:
(i) a remarkable symmetry with respect to the center of the superlattice and (ii) rapid
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oscillations modulated by envelope functions, symmetric with respect to the middle
of the subband. We have plotted here three egienfunctions for the indicated energy
values in the second subband.

The eigenfunctions Wqb
l;mðzÞ are useful and must be used for precise calculations of

phototransition probabilities. Recently, we have successfully applied this formula to
calculate photoluminiscence (PL) in the active region of blue emitting devices, and an
extremely good agreement with the PL results obtained by Nakamura et al. is found
[25]. We believe that most of the formulas reported here can be useful to describe and
to design new optoelectronic devices.

To conclude this work, we shall refer to the interesting surface repulsion effect (the
Tamm and Shockley states), manifest in the nicely factorized structure of the eigen-
value equation (14), and clearly observed in the energy spectra of Figs. 4 and 5. As
mentioned before, the separation of the repelled energy levels, from the residual
bands or subbands, increases as the potential height at the surface grows up. To visu-
alize this property we plot in Fig. 9 the energy spectra of periodic systems which only
differ on the confining potential height Vw. In the sequence energy-spectra shown
there, we can clearly follow the displacement of the two uppermost levels of each
subband, towards the gaps. Notice also that, while these levels move away from
the band, they approach each other. A deficient eigenvalue equation cannot split
Fig. 9. The surface repulsion effect. Increasing the confining potential Vw two levels of each subband are
pushed up. We show here the spectrum of the second and third subbands. The two repelled energy levels
move inside the gaps and become closer as Vw increases.
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these energy levels. They are present in the band structure of all bounded crystalline
systems: metals, semi-metals and semiconductors. It is possible that they are hidden
or mixed up with impurity levels. At any rate they deserve further attention.
5. Conclusions

In this paper several new, simple, and general formulas for the exact evaluation of
fundamental quantities like the resonant energies, resonant states, energy eigenvalues
and eigenfunctions of finite 1D periodic systems, with arbitrary single-cell potential
shape, and distinct boundary conditions have been presented. With these formulas
one can completely resolve the fine structure in bands and subbands and calculate
numerous physical quantities. Plotting the wave functions for specific and illustrative
examples, we exhibit conclusively that the widely accepted Bloch function property
|W(z + lc)|

2 = |W(z)|2, correct for infinite periodic systems, is erroneous and inaccu-
rate for finite size systems. All resonant states and eigenfunctions posses well defined
parity symmetries and interesting intraband symmetry perceptible in the shape of
envelope wave functions. Because of this symmetry the envelope of Wb

l;mðzÞ resembles
the envelope of Wb

l;ðn�mÞðzÞ. The well known surface functions come across and man-
ifest themselves in the nicely factorized structure of the eigenvalues equation (14),
clearly observed in the energy spectra of Figs. 4, 5, and 9.
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